Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current e...Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current experiments. Treatments are total essential amino acid (TEAA), His-removal, Lys-removal, Met-removal, and branch chain amino acid (BCAA)- removal. Results indicated that, pH-value ranged between 5.9 and 6.8, with the highest mean value for the group with BCAA-removal (6.54) in the culture. Concentration of NH3-N ranged between 10.99 to 30.51 mg 100 mL^-1, with the group of TEAA recording the highest average NH3-N concentration (17.85 mg 100 mL^-1). Yields of microbial protein and limiting degree on microbial growth varied with treatments (P 〈 0.01), and the lowest accrued in treatment with BCAA-removal (0.1389, 0.1772, and 0.3161 mg mL^-1 for bacteria, protozoa, and mixed microbes, respectively), compared to the group with TEAA, microbial production of mixed microbes decreased by 44.52%. As for micro-flora, protozoa to bacteria ratio was the lowest for the group with Lys-removal (89.12%), while the highest for the group with BCAA-removal (127.60%) (P 〈 0.01). Furthermore, PCR-SSCP analysis revealed that, microbial profile subjected to substrates within bacteria and protozoa groups. It was therefore concluded that, dietary amino acid influenced both rumen fermentation and microbial characteristics.展开更多
There are many rumen protected amino acid products available for dairy cattle feeding. However, feed formulation programs require values related to rumen solubility, rate of disappearance in the rumen and total tract ...There are many rumen protected amino acid products available for dairy cattle feeding. However, feed formulation programs require values related to rumen solubility, rate of disappearance in the rumen and total tract digestibility and often such values are not available. In vivo testing procedures are complex, time consuming and expensive. This study was conducted to determine if a newrapid, lower cost in vitro method developed for feed ingredients could be applied to a rumen protected lysine product (DairynatLys-30, Jefo Nutrition Inc). In vivo determination of the rapidly solubilized protein fraction, rate of degradation of the slowly solubilized fraction and total tract digestibility studies were compared to the in vitro method in use in many ingredient analysis laboratories for feed ingredients such as forages, protein supplements and grains. Results showed that the rapidly soluble fraction (8.33% and 8.66% of total N for in vivo and in vitro methods) and rates of disappearance in the rumen (2.64%/h and 2.43%/h for in vivo and in vitro procedures) compared favorably between the two methods for the rumen protected product. Total tract digestibility values were slightly higher (84.4%) with the in vivo method used than with the in vitro method (75.9%), and both are in the expected calculated range of digestibility of 80%. In conclusion the in vitro method appears to be an acceptable alternative for evaluating rumen protected amino acids.展开更多
基金carried out in the framework of the Research on Regulating Mechanism of Amino Acid Composition of Rumen Microorganism in Ruminant Projectthe financial support from the National Natural Science Foundation of China (30571344)
文摘Three goats fitted with cannula were used to provide rumen liquor to investigate the effects of limiting amino acids on rumen fermentation and microbial community in vitro. The removal method was used in the current experiments. Treatments are total essential amino acid (TEAA), His-removal, Lys-removal, Met-removal, and branch chain amino acid (BCAA)- removal. Results indicated that, pH-value ranged between 5.9 and 6.8, with the highest mean value for the group with BCAA-removal (6.54) in the culture. Concentration of NH3-N ranged between 10.99 to 30.51 mg 100 mL^-1, with the group of TEAA recording the highest average NH3-N concentration (17.85 mg 100 mL^-1). Yields of microbial protein and limiting degree on microbial growth varied with treatments (P 〈 0.01), and the lowest accrued in treatment with BCAA-removal (0.1389, 0.1772, and 0.3161 mg mL^-1 for bacteria, protozoa, and mixed microbes, respectively), compared to the group with TEAA, microbial production of mixed microbes decreased by 44.52%. As for micro-flora, protozoa to bacteria ratio was the lowest for the group with Lys-removal (89.12%), while the highest for the group with BCAA-removal (127.60%) (P 〈 0.01). Furthermore, PCR-SSCP analysis revealed that, microbial profile subjected to substrates within bacteria and protozoa groups. It was therefore concluded that, dietary amino acid influenced both rumen fermentation and microbial characteristics.
文摘There are many rumen protected amino acid products available for dairy cattle feeding. However, feed formulation programs require values related to rumen solubility, rate of disappearance in the rumen and total tract digestibility and often such values are not available. In vivo testing procedures are complex, time consuming and expensive. This study was conducted to determine if a newrapid, lower cost in vitro method developed for feed ingredients could be applied to a rumen protected lysine product (DairynatLys-30, Jefo Nutrition Inc). In vivo determination of the rapidly solubilized protein fraction, rate of degradation of the slowly solubilized fraction and total tract digestibility studies were compared to the in vitro method in use in many ingredient analysis laboratories for feed ingredients such as forages, protein supplements and grains. Results showed that the rapidly soluble fraction (8.33% and 8.66% of total N for in vivo and in vitro methods) and rates of disappearance in the rumen (2.64%/h and 2.43%/h for in vivo and in vitro procedures) compared favorably between the two methods for the rumen protected product. Total tract digestibility values were slightly higher (84.4%) with the in vivo method used than with the in vitro method (75.9%), and both are in the expected calculated range of digestibility of 80%. In conclusion the in vitro method appears to be an acceptable alternative for evaluating rumen protected amino acids.