The object of this study was to investigate the effects of chromium propionate replacing 25%rumen-protected choline(RPC)on production performance and blood indicators of perinatal dairy cows.According to the principle...The object of this study was to investigate the effects of chromium propionate replacing 25%rumen-protected choline(RPC)on production performance and blood indicators of perinatal dairy cows.According to the principle of ensuring that chromium propionate and RPC were fed 14 days prepartum,27 healthy Holstein cows(age,parity,lactation volume,body condition and expectancy were similar)were randomly divided into three groups(GroupsⅠ,ⅡandⅢ),with nine cows in each group.Cows in GroupⅠwere fed basal diets;cows in GroupⅡwere fed the same basal diets with 10 g•d-1 RPC per cow;and cows in GroupⅢwere fed the same basal diets,but 7.5 g RPC and 2.5 g chromium propionate(4 mg chromium)per cow.The results showed that dry matter intake(DMI)of prepartum in GroupsⅡandⅢwas significantly increased(P<0.05),compared with GroupⅠ;however,there was no significant difference between GroupsⅡandⅢ(P>0.05).The milk fat content in GroupⅢwas significantly higher than that in GroupⅠon the 7th day of postpartum(P<0.05).The urea nitrogen content in GroupsⅡandⅢsignificantly lower than that in GroupⅠon the 21st day of postpartum(P<0.05),but there were no significant difference between GroupsⅡandⅢ(P>0.05).The somatic cell counts in GroupⅢwere significantly lower than those in GroupsⅠandⅡon the 14th and 21st days of postpartum(P<0.05).The contents of the total cholesterol in GroupⅢdecreased significantly compared to GroupⅡon the 7th day of prepartum,on the day of calving and the 7th day of postpartum(P<0.05).The concentration of high-density lipoprotein(HDL)in GroupⅢwas significantly higher than that in GroupⅡon the 7th day of prepartum,on the day of calving and the 7th day of postpartum(P<0.05).On the 7th day of postpartum the concentration of insulin in GroupⅢwas obviously higher than that in GroupⅡ(P<0.05).In summary,replacing 25%of rumen-protected choline with chromium propionate reduced production costs and improved dairy farming benefits.展开更多
The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea,frequently accompanied by inflammation and metabolic disturbances(including amino acid metabolism).Try...The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea,frequently accompanied by inflammation and metabolic disturbances(including amino acid metabolism).Tryptophan(Trp)plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine,5-hydroxytryptamine,or indole pathways,which could be dictated by the gut microbiota either directly or indirectly.Emerging evidence suggests a strong asso-ciation between piglet diarrhea and Trp metabolism.Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea.Overall,this review could provide valuable in-sights to explore effective strategies for managing piglet diarrhea and the related challenges.展开更多
The objective was to evaluate effects of rumen-protected methionine (RP-Met) supplementation on rumen fermentation, lactation performance and plasma characteristics in dairy cows. Twenty-four multiparous (2.2 - 0.4...The objective was to evaluate effects of rumen-protected methionine (RP-Met) supplementation on rumen fermentation, lactation performance and plasma characteristics in dairy cows. Twenty-four multiparous (2.2 - 0.40 parity) Holstein dairy cows, averaged 620 ± 12.3 kg of BW, 68 ± 2.5 day in milk and daily milk production averaged 26.0 ±0.3 kg/cow were used in a replicated 4 × 4 Latin square experiment. The treatments were: control (without RP-Met), LRP-Met, MRP-Met and HRP-Met with 20, 40 and 60 g RP-Met per cow per day, respectively. RP-Met was hand-mixed into the top one-third of the daily ration. Experimental periods were 30 days with 15 d of adaptation and 15 d of sampling. Dry matter (DM) intake and milk yields were not affected (P 〉 0.05) with increasing RP-Met supplementation. Yields of 4%FCM, ECM, milk fat and milk protein were higher (P 〈 0.03) for RP-Met supplementation than control and were quadratically (P 〈 0.05) changed due to the higher percentage of milk fat and protein for RP-Met supplementation than control (P 〈 0.03). Ruminal pH tended to be lower (P = 0.071) for RP-Met supplementation than control, whereas total VFA concentration tended to be higher (P = 0.086) for RP-Met supplementation than control. Ratio of acetate to propionate decreased linearly (P = 0.001) from 4.01 to 3.57 as RP-Met supplementation increased due to the increase in propionate production. Digestibilities of DM, OM, CP, NDF and ADF in the total tract were higher (P 〈 0.05) for RP-Met supplementation than control and were quadratically (P 〈 0.05) increased with increasing RP-Met supplementation. Plasma concentrations of glucose not affected (P 〉 0.05) with RP-Met supplementation, Plasma concentrations of non-esterified fatty acids (NEFA) were significantly lower (P = 0.017) for RP-Met supplementation than control and were linearly (P = 0.011) changed. Plasma concentrations of beta-hydroxybutyrate tended to be lower (P = 0.068) for RP-Met supplementation than control and were linearly (P = 0.001) changed. The present results indicate that supplementation of diet with RP-Met improved the content of milk fat and protein, rumen fermentation and feed digestion, decreased plasma concentrations of NEFA. It was suggested that the RP-Met stimulated the digestive microorganisms or enzymes in a dose-dependent manner. In the experimental conditions of this trial, the optimum RP-Met dose was about 25 g RP-Met per cow per day.展开更多
BACKGROUND Colorectal cancer(CRC)has a high incidence and mortality.Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis,progression,and metastasis of CR...BACKGROUND Colorectal cancer(CRC)has a high incidence and mortality.Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis,progression,and metastasis of CRC.AIM To investigate the effect of indole-3-acetaldehyde(IAAD)on CRC.METHODS The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines(HCT116 and DLD-1).Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests.Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide.Invasiveness was investigated using the transwell assay.Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor(AhR)downstream genes.The PharmMapper,SEA,and SWISS databases were used to screen for potential target proteins of IAAD,and the core proteins were identified through the String database.RESULTS IAAD reduced tumorigenesis in a syngeneic mouse model.In CRC cell lines HCT116 and DLD1,IAAD exhibited cytotoxicity starting at 24 h of treatment,while it reduced Ki67 expression in the nucleus.The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells,which may be related to the activation of AhR.IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells.At low concentrations(<12.5μmol/L),IAAD only exhibited cytotoxic effects without promoting cell invasion.In addition,predictions based on online databases,protein-protein interaction analysis,and molecular docking showed that IAAD can bind to matrix metalloproteinase-9(MMP9),angiotensin converting enzyme(ACE),poly(ADP-ribose)polymerase-1(PARP1),matrix metalloproteinase-2(MMP2),and myeloperoxidase(MPO).CONCLUSION Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC;however,at high concentrations(≥25μmol/L),it can also promote epithelial-mesenchymal transition and invasion in CRC cells.IAAD activates AhR and directly binds MMP9,ACE,PARP1,MMP2,and MPO,which partly reveals why it has a bidirectional effect.展开更多
The gene encoded for tryptophan decarboxylase (TDC), which is the key enzyme in terpenoil indole alkaloids pathway, was targeted to different subcellular compartments and stably expressed in transgenic tobacco (Nicoti...The gene encoded for tryptophan decarboxylase (TDC), which is the key enzyme in terpenoil indole alkaloids pathway, was targeted to different subcellular compartments and stably expressed in transgenic tobacco (Nicotiana tabacum L.) plants at the levels detected by Western blot and tryptamine accumulation analysis. It was shown that the TDC was located in subcellular compartments, the chloroplasts and cytosol. The recombinant TDC targeted to chloroplasts and cytosol in tobacco plants was effectively expressed as soluble protein by Western blot analysis and enzymatic assay. The level of tryptamine accumulation in chloroplast was higher than that in cytosol and very low in vacuole and endoplasmic reticulum (ER) to be hardly detected by Western blot analysis. It was indicated that the highest amount of tryptamine was in chloroplasts, lower in endoplasmic reticula and the lowest in vacuoles as compared to those in wild type plants. The TDC targeted to different subcellular compartments of tobacco plants and its expression level were studied by different nucleotide sequences coding signal peptides at 5'-end of tdc gene in order to know the effects of the TDC in compartmentation on its functionality.展开更多
Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types...Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.展开更多
AIM: To evaluate how Helicobacter pylori(H. pylori) is able to evade the immune response and whether it enhances systemic immune tolerance against colorectal cancer.METHODS: This prospective randomized study involved ...AIM: To evaluate how Helicobacter pylori(H. pylori) is able to evade the immune response and whether it enhances systemic immune tolerance against colorectal cancer.METHODS: This prospective randomized study involved 97 consecutive colorectal cancer patients and 108 cancer-free patients with extra-digestive diseases. Colorectal cancer and cancer-free patients were assigned into subgroups according to H. pylori Ig G seropositivity. Exposure to H. pylori was determined by Ig G seropositivity which was detected by enzyme linked immunoassay(ELISA). Serum neopterin levels were measured by ELISA. Serum tryptophan, kynurenine, and urinary biopterin concentrations were measured by high performance liquid chromatography. Serum nitrite levels were detected spectrophotometrically. Serum indoleamine 2,3-dioxygenase activity was estimated by the kynurenine to tryptophan ratio and by assessing the correlation between serum neopterin concentrations and the kynurenine to tryptophan ratio. The frequencies of increased serum kynurenine to tryptophan ratio of H. pylori seronegative and seropositive colorectal cancer subgroups were estimated by comparing them with the average kynurenine to tryptophan ratio of H. pylori seronegative tumor-free patients.RESULTS: Compared with respective controls, in both H. pylori seronegative and seropositive colorectal cancer patients, while serum tryptophan levels were decreased(controls vs patients; seronegative: 20.37 ± 0.89 μmol/L vs 15.71 ± 1.16 μmol/L, P < 0.05; seropositive: 20.71 ± 0.81 μmol/L vs 14.97 ± 0.79 μmol/L, P < 0.01) the kynurenine to tryptophan ratio was significantly increased(controls vs patients; seronegative: 52.85± 11.85 μmol/mmol vs 78.91 ± 8.68 μmol/mmol, P < 0.01, seropositive: 47.31 ± 5.93 μmol/mmol vs 109.65 ± 11.50 μmol/mmol, P < 0.01). Neopterin concentrations in cancer patients were significantly elevated compared with controls(P < 0.05). There was a significant correlation between serum neopterin levels and kynurenine/tryptophan in control and colorectal cancer patients groups(r s = 0.494, P = 0.0001 and r s= 0.293, P = 0.004, respectively). Serum nitrite levels of H. pylori seropositive cancer cases were significantly decreased compared with seropositive controls(controls vs patients; 26.04 ± 2.39 μmol/L vs 20.41 ± 1.48 μmol/L, P < 0.05) The decrease in the nitrite levels of H. pylori seropositive cancer patients may be attributed to excessive formation of peroxynitrite and other reactive nitrogen species.CONCLUSION: A significantly high kynurenine/tryptophan suggested that H. pylori may support the immune tolerance leading to cancer development, even without an apparent upper gastrointestinal tract disease.展开更多
Oxidative stress can induce abnormal tryptophan metabolism. The present study was mainly conducted to determine the effect of dietary tryptophan levels on oxidative stress in the liver of weaned pigs challenged by diq...Oxidative stress can induce abnormal tryptophan metabolism. The present study was mainly conducted to determine the effect of dietary tryptophan levels on oxidative stress in the liver of weaned pigs challenged by diquat. A total of 36 PIC piglets weaned at 21 days of age were randomly allotted to 1 of 3 diets containing dietary tryptophan levels of 0.18, 0.30, and 0A5% for 14 d. On day 8, the piglets were injected intraperitoneally with sterile 0.9% NaCI solution or diquat (10 mg/kg body weight). During the first 7 d of trial, increasing dietary tryptophan levels enhanced average daily gain (P = 0.09) and average daily feed intake (P = 0.08), and decreased the feed efficiency (P 〈 0.05) of piglets. The growth performance was decreased by diquat injection (P 〈 0.05). Diquat injection also decreased the activities of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma and liver (P 〈 0.05), increased plasma malondialdehyde (MDA) (P 〈 0.05) and urea nitrogen (P 〈 0.05) concentrations, and enhanced MDA concentration (P = 0.09) and tryptophan 2,3-dioxygenase (TDO) activity (P = 0.07) in liver of piglets. Increasing dietary tryptophan levels could attenuate the effects of diquat injection on the MDA (P = 0.06) concentration and the activities of SOD (P = 0.09) and GPx (P = 0.05) of the liver, and plasma urea nitrogen (P = 0.06) concentration in the piglet. There was a synergistic role for increasing TDO activity in the liver between dietary tryptophan levels and diquat injection (P 〈 0.05). These results suggest that increasing dietary tryptophan levels could attenuate the oxidative stress of the liver in weaned piglets intraperitoneally injected with diquat via enhancing the antioxidant capacity.展开更多
Background: Highly automated cage-rearing systems are becoming increasingly popular in China. However, a high stocking density can cause oxidative stress and decrease broiler performance. The tryptophan (TRP) deriv...Background: Highly automated cage-rearing systems are becoming increasingly popular in China. However, a high stocking density can cause oxidative stress and decrease broiler performance. The tryptophan (TRP) derivative 5-hydroxytryptophan (5-HT) has been shown to preserve membrane fluidity in birds suffering from oxidative stress Therefore, this experiment was conducted to determine the effects of dietan/TRP supplementation on performance, breast meat quality and oxidative stress in broilers reared in cages with a high or low stocking density. Methods: Female Arbor Acres broilers (25-d-old, n = 144) were randomly allocated to 1 of 4 treatments. The birds were fed a diet based on corn, soybean meal, cottonseed meal and corn gluten meal containing either 0.18 or 0.27% TRP and were housed with stocking densities of 11 or 15.4 birds/m2 in a 2 x 2 factorial experiment. Broiler performance was evaluated from d 25 to 42. Eight birds from each treatment were slaughtered on d 42 and plasma and breast muscle samples were collected to measure biochemical indices. Results: A higher stocking density tended to be associated with reduced weight gain (P 〈 0.10), and significantly increased plasma glutamic-pyruvic transaminase (GPT) activity (P 〈 0.001). Increased dietary TRP significantly reduced the activities of lactic dehydrogenase and GPT while increasing total cholesterol in the plasma (P 〈 0.01), reducing drip loss of breast muscle (P 〈 0.10) and improving feed efficiency (P 〈 0.10). Conclusions: An increase in dietary TRP, ].S-fold higher than the standard supplementation level, can alleviate oxidative stress as well as improve welfare and feed efficiency in broilers reared in cages with a high stocking density.展开更多
A feed trial was conducted with a total of 1 134 Beijing ducklings to study the optimum level of dietary lysine (Lys) (0.95, 1.10, 1.25%), methionine (Met) (0.26, 0.46, 0.66%) and tryptophan (Trp) (0.20, 0....A feed trial was conducted with a total of 1 134 Beijing ducklings to study the optimum level of dietary lysine (Lys) (0.95, 1.10, 1.25%), methionine (Met) (0.26, 0.46, 0.66%) and tryptophan (Trp) (0.20, 0.30, 0.40%) for those ducklings during a phase of 0-2 weeks. Ducklings were randomly allotted to 27 groups according to a 3 × 3× 3 factorial arrangement and fed a basal corn-soybean-peanut meal diet containing 20.26% CP, 12.45 MJ kg^-1 ME. The results from this study indicate that Lys affected body weight (P〈0.01), feed intake (0-14 d) (P〈0.01), but had no effect on feed/gain (0-14 d) (P〉0.05), uric acid concentration (P 〉 0.05). Methionine influenced body weight (P 〈 0.01), feed/gain (P 〈 0.05), and feed intake (P 〈 0.01). Tryphtophan had no effect on indices measured. The requirement of the Lys and Met for Beijing ducklings of 0-2 weeks of age were 1.10 and 0.46%. The requirement of Trp for Beijing ducklings of 0-2 weeks of age was not more than 0.20%.展开更多
Unbalanced brain serotonin(5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydr...Unbalanced brain serotonin(5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydroxylase-2(TPH2). In the present study, the clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated(Cas) system was used to target the Tph2 gene in Bama mini pig fetal fibroblasts. It was found that CRISPR/Cas9 targeting efficiency could be as high as 61.5%, and the biallelic mutation efficiency reached at38.5%. The biallelic modified colonies were used as donors for somatic cell nuclear transfer(SCNT) and 10 Tph2 targeted piglets were successfully generated. These Tph2 KO piglets were viable and appeared normal at the birth.However, their central 5-HT levels were dramatically reduced, and their survival and growth rates were impaired before weaning. These Tph2 KO pigs are valuable large-animal models for studies of 5-HT deficiency induced behavior abnomality.展开更多
Objective To investigate changes of 5-hydroxytryptamine (5-HT) and its synthesis rate-limiting enzyme tryp-tophan hydroxylase (TPH) in the ventral horn of spinal cord after exercise-induced fatigue, and to further...Objective To investigate changes of 5-hydroxytryptamine (5-HT) and its synthesis rate-limiting enzyme tryp-tophan hydroxylase (TPH) in the ventral horn of spinal cord after exercise-induced fatigue, and to further discuss the mecha- nism of exercise-induced central fatigue at spinal level. Methods Sixteen healthy adult Wistar rats were randomly divided into 2 groups: exercise-induced fatigue group and control group. Immunohistochemical staining for 5-HT and TPH in the ventral horn were performed and analysized quantitatively. The mean optic densities of 5-HT and TPH positive fibers or terminals were measured by computerized image analyzer. Results Both 5-HT and TPH positive fibers/terminals decreased in the exercise-induced fatigue group. The immunohistochemical staining was weaker and the mean optic densities decreased obviously in the fatigue group compared with those in the control group (P 〈 0.05). Conclusion 5-HT and TPH in the ventral horn of spinal cord might be involved in exercise-induced fatigue.展开更多
Tryptophan(Trp) residues in a pullulanase were modified by N-bromosuccinimide(NBS). The results of the Spande method indicate that there are 18 Trp residues in the pullulanase and nine of them are located on the s...Tryptophan(Trp) residues in a pullulanase were modified by N-bromosuccinimide(NBS). The results of the Spande method indicate that there are 18 Trp residues in the pullulanase and nine of them are located on the surface af the enzyme. Three of these Trp residues are nonessential residues which show the fastest reaction rate according to the Zou's plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are the slowest in the reaction rate or non-reactive residues for the reaction. The fluorescence and circular dichroism(CD) spectra of the pullulanase have been changed after the reaction with NBS. Potassium iodide(KI) and acrylamide also have remarkable influences on the fluorescence spectra of the pullulanase.展开更多
A high sensitive flow-injection chemiluminescence (FI-CL) method for the determination of tryptophan has been developed. The method is based on the chemiluminescence reaction of galangin-potassium permanganate-trypt...A high sensitive flow-injection chemiluminescence (FI-CL) method for the determination of tryptophan has been developed. The method is based on the chemiluminescence reaction of galangin-potassium permanganate-tryptophan in polyphosphoric acid (PPA) media. Under the optimized conditions, tryptophan was determined in the range 0.05-10 μg/mL with the detection limit (3tr) of 5.0 × 10^-3 μg/mL. The relative standard deviation (RSD) was 1.0% for 11 replicate determinations of 1.0 μg/mL tryptophan. Three synthetic samples were determined selectively with recoveries in the range from 99.6% to 102.0% in the presence of other amino acids.展开更多
In this work, a novel method was constructed to determine the enantiomeric composition of tryptophan (Trp) by bovine serum albumin (BSA) based on the fluorescence spectra of the receptor-ligand mixtures coupled wi...In this work, a novel method was constructed to determine the enantiomeric composition of tryptophan (Trp) by bovine serum albumin (BSA) based on the fluorescence spectra of the receptor-ligand mixtures coupled with partial least squares (PLS-1) analysis. As a result the enantiomeric composition of Trp was accurately determined.展开更多
基金Supported by China Agriculture Research System(CARS-36)。
文摘The object of this study was to investigate the effects of chromium propionate replacing 25%rumen-protected choline(RPC)on production performance and blood indicators of perinatal dairy cows.According to the principle of ensuring that chromium propionate and RPC were fed 14 days prepartum,27 healthy Holstein cows(age,parity,lactation volume,body condition and expectancy were similar)were randomly divided into three groups(GroupsⅠ,ⅡandⅢ),with nine cows in each group.Cows in GroupⅠwere fed basal diets;cows in GroupⅡwere fed the same basal diets with 10 g•d-1 RPC per cow;and cows in GroupⅢwere fed the same basal diets,but 7.5 g RPC and 2.5 g chromium propionate(4 mg chromium)per cow.The results showed that dry matter intake(DMI)of prepartum in GroupsⅡandⅢwas significantly increased(P<0.05),compared with GroupⅠ;however,there was no significant difference between GroupsⅡandⅢ(P>0.05).The milk fat content in GroupⅢwas significantly higher than that in GroupⅠon the 7th day of postpartum(P<0.05).The urea nitrogen content in GroupsⅡandⅢsignificantly lower than that in GroupⅠon the 21st day of postpartum(P<0.05),but there were no significant difference between GroupsⅡandⅢ(P>0.05).The somatic cell counts in GroupⅢwere significantly lower than those in GroupsⅠandⅡon the 14th and 21st days of postpartum(P<0.05).The contents of the total cholesterol in GroupⅢdecreased significantly compared to GroupⅡon the 7th day of prepartum,on the day of calving and the 7th day of postpartum(P<0.05).The concentration of high-density lipoprotein(HDL)in GroupⅢwas significantly higher than that in GroupⅡon the 7th day of prepartum,on the day of calving and the 7th day of postpartum(P<0.05).On the 7th day of postpartum the concentration of insulin in GroupⅢwas obviously higher than that in GroupⅡ(P<0.05).In summary,replacing 25%of rumen-protected choline with chromium propionate reduced production costs and improved dairy farming benefits.
基金funded by the National Key Research&Development Program of China(2023YFF1001900)Fundamental Research Funds for the Central Universities(SWU-KR24023 and SWU-KQ23012)Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0786).
文摘The intestinal architecture of piglets is vulnerable to disruption during weaning transition and leads to diarrhea,frequently accompanied by inflammation and metabolic disturbances(including amino acid metabolism).Tryptophan(Trp)plays an essential role in orchestrating intestinal immune tolerance through its metabolism via the kynurenine,5-hydroxytryptamine,or indole pathways,which could be dictated by the gut microbiota either directly or indirectly.Emerging evidence suggests a strong asso-ciation between piglet diarrhea and Trp metabolism.Here we aim to summarize the intricate balance of microbiota-host crosstalk by analyzing alterations in both the host and microbial pathways of Trp and discuss how Trp metabolism may affect piglet diarrhea.Overall,this review could provide valuable in-sights to explore effective strategies for managing piglet diarrhea and the related challenges.
文摘The objective was to evaluate effects of rumen-protected methionine (RP-Met) supplementation on rumen fermentation, lactation performance and plasma characteristics in dairy cows. Twenty-four multiparous (2.2 - 0.40 parity) Holstein dairy cows, averaged 620 ± 12.3 kg of BW, 68 ± 2.5 day in milk and daily milk production averaged 26.0 ±0.3 kg/cow were used in a replicated 4 × 4 Latin square experiment. The treatments were: control (without RP-Met), LRP-Met, MRP-Met and HRP-Met with 20, 40 and 60 g RP-Met per cow per day, respectively. RP-Met was hand-mixed into the top one-third of the daily ration. Experimental periods were 30 days with 15 d of adaptation and 15 d of sampling. Dry matter (DM) intake and milk yields were not affected (P 〉 0.05) with increasing RP-Met supplementation. Yields of 4%FCM, ECM, milk fat and milk protein were higher (P 〈 0.03) for RP-Met supplementation than control and were quadratically (P 〈 0.05) changed due to the higher percentage of milk fat and protein for RP-Met supplementation than control (P 〈 0.03). Ruminal pH tended to be lower (P = 0.071) for RP-Met supplementation than control, whereas total VFA concentration tended to be higher (P = 0.086) for RP-Met supplementation than control. Ratio of acetate to propionate decreased linearly (P = 0.001) from 4.01 to 3.57 as RP-Met supplementation increased due to the increase in propionate production. Digestibilities of DM, OM, CP, NDF and ADF in the total tract were higher (P 〈 0.05) for RP-Met supplementation than control and were quadratically (P 〈 0.05) increased with increasing RP-Met supplementation. Plasma concentrations of glucose not affected (P 〉 0.05) with RP-Met supplementation, Plasma concentrations of non-esterified fatty acids (NEFA) were significantly lower (P = 0.017) for RP-Met supplementation than control and were linearly (P = 0.011) changed. Plasma concentrations of beta-hydroxybutyrate tended to be lower (P = 0.068) for RP-Met supplementation than control and were linearly (P = 0.001) changed. The present results indicate that supplementation of diet with RP-Met improved the content of milk fat and protein, rumen fermentation and feed digestion, decreased plasma concentrations of NEFA. It was suggested that the RP-Met stimulated the digestive microorganisms or enzymes in a dose-dependent manner. In the experimental conditions of this trial, the optimum RP-Met dose was about 25 g RP-Met per cow per day.
基金Supported by Zhejiang Provincial Natural Science Foundation of China,No.LTGD23C040008,No.LBY23H200006,and No.LQ22H030004.
文摘BACKGROUND Colorectal cancer(CRC)has a high incidence and mortality.Recent studies have shown that indole derivatives involved in gut microbiota metabolism can impact the tumorigenesis,progression,and metastasis of CRC.AIM To investigate the effect of indole-3-acetaldehyde(IAAD)on CRC.METHODS The effect of IAAD was evaluated in a syngeneic mouse model of CRC and CRC cell lines(HCT116 and DLD-1).Cell proliferation was assessed by Ki-67 fluorescence staining and cytotoxicity tests.Cell apoptosis was analysed by flow cytometry after staining with Annexin V-fluorescein isothiocyanate and propidium iodide.Invasiveness was investigated using the transwell assay.Western blotting and real-time fluorescence quantitative polymerase chain reaction were performed to evaluate the expression of epithelial-mesenchymal transition related genes and aryl hydrocarbon receptor(AhR)downstream genes.The PharmMapper,SEA,and SWISS databases were used to screen for potential target proteins of IAAD,and the core proteins were identified through the String database.RESULTS IAAD reduced tumorigenesis in a syngeneic mouse model.In CRC cell lines HCT116 and DLD1,IAAD exhibited cytotoxicity starting at 24 h of treatment,while it reduced Ki67 expression in the nucleus.The results of flow cytometry showed that IAAD induced apoptosis in HCT116 cells but had no effect on DLD1 cells,which may be related to the activation of AhR.IAAD can also increase the invasiveness and epithelial-mesenchymal transition of HCT116 and DLD1 cells.At low concentrations(<12.5μmol/L),IAAD only exhibited cytotoxic effects without promoting cell invasion.In addition,predictions based on online databases,protein-protein interaction analysis,and molecular docking showed that IAAD can bind to matrix metalloproteinase-9(MMP9),angiotensin converting enzyme(ACE),poly(ADP-ribose)polymerase-1(PARP1),matrix metalloproteinase-2(MMP2),and myeloperoxidase(MPO).CONCLUSION Indole-3-aldehyde can induce cell apoptosis and inhibit cell proliferation to prevent the occurrence of CRC;however,at high concentrations(≥25μmol/L),it can also promote epithelial-mesenchymal transition and invasion in CRC cells.IAAD activates AhR and directly binds MMP9,ACE,PARP1,MMP2,and MPO,which partly reveals why it has a bidirectional effect.
文摘The gene encoded for tryptophan decarboxylase (TDC), which is the key enzyme in terpenoil indole alkaloids pathway, was targeted to different subcellular compartments and stably expressed in transgenic tobacco (Nicotiana tabacum L.) plants at the levels detected by Western blot and tryptamine accumulation analysis. It was shown that the TDC was located in subcellular compartments, the chloroplasts and cytosol. The recombinant TDC targeted to chloroplasts and cytosol in tobacco plants was effectively expressed as soluble protein by Western blot analysis and enzymatic assay. The level of tryptamine accumulation in chloroplast was higher than that in cytosol and very low in vacuole and endoplasmic reticulum (ER) to be hardly detected by Western blot analysis. It was indicated that the highest amount of tryptamine was in chloroplasts, lower in endoplasmic reticula and the lowest in vacuoles as compared to those in wild type plants. The TDC targeted to different subcellular compartments of tobacco plants and its expression level were studied by different nucleotide sequences coding signal peptides at 5'-end of tdc gene in order to know the effects of the TDC in compartmentation on its functionality.
基金supported by the STI 2030—Major Projects 2021ZD0204000,No.2021ZD0204003 (to XZ)the National Natural Science Foundation of China,Nos.32170973 (to XZ),32071018 (to ZH)。
文摘Dysregulation of neurotransmitter metabolism in the central nervous system contributes to mood disorders such as depression, anxiety, and post–traumatic stress disorder. Monoamines and amino acids are important types of neurotransmitters. Our previous results have shown that disco-interacting protein 2 homolog A(Dip2a) knockout mice exhibit brain development disorders and abnormal amino acid metabolism in serum. This suggests that DIP2A is involved in the metabolism of amino acid–associated neurotransmitters. Therefore, we performed targeted neurotransmitter metabolomics analysis and found that Dip2a deficiency caused abnormal metabolism of tryptophan and thyroxine in the basolateral amygdala and medial prefrontal cortex. In addition, acute restraint stress induced a decrease in 5-hydroxytryptamine in the basolateral amygdala. Additionally, Dip2a was abundantly expressed in excitatory neurons of the basolateral amygdala, and deletion of Dip2a in these neurons resulted in hopelessness-like behavior in the tail suspension test. Altogether, these findings demonstrate that DIP2A in the basolateral amygdala may be involved in the regulation of stress susceptibility. This provides critical evidence implicating a role of DIP2A in affective disorders.
文摘AIM: To evaluate how Helicobacter pylori(H. pylori) is able to evade the immune response and whether it enhances systemic immune tolerance against colorectal cancer.METHODS: This prospective randomized study involved 97 consecutive colorectal cancer patients and 108 cancer-free patients with extra-digestive diseases. Colorectal cancer and cancer-free patients were assigned into subgroups according to H. pylori Ig G seropositivity. Exposure to H. pylori was determined by Ig G seropositivity which was detected by enzyme linked immunoassay(ELISA). Serum neopterin levels were measured by ELISA. Serum tryptophan, kynurenine, and urinary biopterin concentrations were measured by high performance liquid chromatography. Serum nitrite levels were detected spectrophotometrically. Serum indoleamine 2,3-dioxygenase activity was estimated by the kynurenine to tryptophan ratio and by assessing the correlation between serum neopterin concentrations and the kynurenine to tryptophan ratio. The frequencies of increased serum kynurenine to tryptophan ratio of H. pylori seronegative and seropositive colorectal cancer subgroups were estimated by comparing them with the average kynurenine to tryptophan ratio of H. pylori seronegative tumor-free patients.RESULTS: Compared with respective controls, in both H. pylori seronegative and seropositive colorectal cancer patients, while serum tryptophan levels were decreased(controls vs patients; seronegative: 20.37 ± 0.89 μmol/L vs 15.71 ± 1.16 μmol/L, P < 0.05; seropositive: 20.71 ± 0.81 μmol/L vs 14.97 ± 0.79 μmol/L, P < 0.01) the kynurenine to tryptophan ratio was significantly increased(controls vs patients; seronegative: 52.85± 11.85 μmol/mmol vs 78.91 ± 8.68 μmol/mmol, P < 0.01, seropositive: 47.31 ± 5.93 μmol/mmol vs 109.65 ± 11.50 μmol/mmol, P < 0.01). Neopterin concentrations in cancer patients were significantly elevated compared with controls(P < 0.05). There was a significant correlation between serum neopterin levels and kynurenine/tryptophan in control and colorectal cancer patients groups(r s = 0.494, P = 0.0001 and r s= 0.293, P = 0.004, respectively). Serum nitrite levels of H. pylori seropositive cancer cases were significantly decreased compared with seropositive controls(controls vs patients; 26.04 ± 2.39 μmol/L vs 20.41 ± 1.48 μmol/L, P < 0.05) The decrease in the nitrite levels of H. pylori seropositive cancer patients may be attributed to excessive formation of peroxynitrite and other reactive nitrogen species.CONCLUSION: A significantly high kynurenine/tryptophan suggested that H. pylori may support the immune tolerance leading to cancer development, even without an apparent upper gastrointestinal tract disease.
基金financially supported by the earmarked fund for the China Agriculture Research System(CARS-36)the grant from the Science and Technology Support Program of Sichuan Province(13ZC2237)
文摘Oxidative stress can induce abnormal tryptophan metabolism. The present study was mainly conducted to determine the effect of dietary tryptophan levels on oxidative stress in the liver of weaned pigs challenged by diquat. A total of 36 PIC piglets weaned at 21 days of age were randomly allotted to 1 of 3 diets containing dietary tryptophan levels of 0.18, 0.30, and 0A5% for 14 d. On day 8, the piglets were injected intraperitoneally with sterile 0.9% NaCI solution or diquat (10 mg/kg body weight). During the first 7 d of trial, increasing dietary tryptophan levels enhanced average daily gain (P = 0.09) and average daily feed intake (P = 0.08), and decreased the feed efficiency (P 〈 0.05) of piglets. The growth performance was decreased by diquat injection (P 〈 0.05). Diquat injection also decreased the activities of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma and liver (P 〈 0.05), increased plasma malondialdehyde (MDA) (P 〈 0.05) and urea nitrogen (P 〈 0.05) concentrations, and enhanced MDA concentration (P = 0.09) and tryptophan 2,3-dioxygenase (TDO) activity (P = 0.07) in liver of piglets. Increasing dietary tryptophan levels could attenuate the effects of diquat injection on the MDA (P = 0.06) concentration and the activities of SOD (P = 0.09) and GPx (P = 0.05) of the liver, and plasma urea nitrogen (P = 0.06) concentration in the piglet. There was a synergistic role for increasing TDO activity in the liver between dietary tryptophan levels and diquat injection (P 〈 0.05). These results suggest that increasing dietary tryptophan levels could attenuate the oxidative stress of the liver in weaned piglets intraperitoneally injected with diquat via enhancing the antioxidant capacity.
基金supported by the System for Poultry Production Technology,Beijing Innovation Research Team of Modern Agriculture(CARSPSTP)the National Key Technology R&D Program of China during the 12~(th) five-year plan(2012BAD39B04)
文摘Background: Highly automated cage-rearing systems are becoming increasingly popular in China. However, a high stocking density can cause oxidative stress and decrease broiler performance. The tryptophan (TRP) derivative 5-hydroxytryptophan (5-HT) has been shown to preserve membrane fluidity in birds suffering from oxidative stress Therefore, this experiment was conducted to determine the effects of dietan/TRP supplementation on performance, breast meat quality and oxidative stress in broilers reared in cages with a high or low stocking density. Methods: Female Arbor Acres broilers (25-d-old, n = 144) were randomly allocated to 1 of 4 treatments. The birds were fed a diet based on corn, soybean meal, cottonseed meal and corn gluten meal containing either 0.18 or 0.27% TRP and were housed with stocking densities of 11 or 15.4 birds/m2 in a 2 x 2 factorial experiment. Broiler performance was evaluated from d 25 to 42. Eight birds from each treatment were slaughtered on d 42 and plasma and breast muscle samples were collected to measure biochemical indices. Results: A higher stocking density tended to be associated with reduced weight gain (P 〈 0.10), and significantly increased plasma glutamic-pyruvic transaminase (GPT) activity (P 〈 0.001). Increased dietary TRP significantly reduced the activities of lactic dehydrogenase and GPT while increasing total cholesterol in the plasma (P 〈 0.01), reducing drip loss of breast muscle (P 〈 0.10) and improving feed efficiency (P 〈 0.10). Conclusions: An increase in dietary TRP, ].S-fold higher than the standard supplementation level, can alleviate oxidative stress as well as improve welfare and feed efficiency in broilers reared in cages with a high stocking density.
文摘A feed trial was conducted with a total of 1 134 Beijing ducklings to study the optimum level of dietary lysine (Lys) (0.95, 1.10, 1.25%), methionine (Met) (0.26, 0.46, 0.66%) and tryptophan (Trp) (0.20, 0.30, 0.40%) for those ducklings during a phase of 0-2 weeks. Ducklings were randomly allotted to 27 groups according to a 3 × 3× 3 factorial arrangement and fed a basal corn-soybean-peanut meal diet containing 20.26% CP, 12.45 MJ kg^-1 ME. The results from this study indicate that Lys affected body weight (P〈0.01), feed intake (0-14 d) (P〈0.01), but had no effect on feed/gain (0-14 d) (P〉0.05), uric acid concentration (P 〉 0.05). Methionine influenced body weight (P 〈 0.01), feed/gain (P 〈 0.05), and feed intake (P 〈 0.01). Tryphtophan had no effect on indices measured. The requirement of the Lys and Met for Beijing ducklings of 0-2 weeks of age were 1.10 and 0.46%. The requirement of Trp for Beijing ducklings of 0-2 weeks of age was not more than 0.20%.
基金supported by a grant from the National Natural Science Foundation of China (No.81570402)a grant from the Jiangsu Key Laboratory of Xenotransplantation (BM2012116)+3 种基金grants from the Sanming Project of Medicine in Shenzhenthe Fund for High Level Medical Discipline Construction of Shenzhen (No.2016031638)the Shenzhen Foundation of Science and Technology (No.JCYJ20160229204849975 and GCZX2015043017281705)grant from the National Basic Research Program of China (2015CB559200)
文摘Unbalanced brain serotonin(5-HT) levels have implications in various behavioral abnormalities and neuropsychiatric disorders. The biosynthesis of neuronal 5-HT is regulated by the rate-limiting enzyme, tryptophan hydroxylase-2(TPH2). In the present study, the clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated(Cas) system was used to target the Tph2 gene in Bama mini pig fetal fibroblasts. It was found that CRISPR/Cas9 targeting efficiency could be as high as 61.5%, and the biallelic mutation efficiency reached at38.5%. The biallelic modified colonies were used as donors for somatic cell nuclear transfer(SCNT) and 10 Tph2 targeted piglets were successfully generated. These Tph2 KO piglets were viable and appeared normal at the birth.However, their central 5-HT levels were dramatically reduced, and their survival and growth rates were impaired before weaning. These Tph2 KO pigs are valuable large-animal models for studies of 5-HT deficiency induced behavior abnomality.
文摘Objective To investigate changes of 5-hydroxytryptamine (5-HT) and its synthesis rate-limiting enzyme tryp-tophan hydroxylase (TPH) in the ventral horn of spinal cord after exercise-induced fatigue, and to further discuss the mecha- nism of exercise-induced central fatigue at spinal level. Methods Sixteen healthy adult Wistar rats were randomly divided into 2 groups: exercise-induced fatigue group and control group. Immunohistochemical staining for 5-HT and TPH in the ventral horn were performed and analysized quantitatively. The mean optic densities of 5-HT and TPH positive fibers or terminals were measured by computerized image analyzer. Results Both 5-HT and TPH positive fibers/terminals decreased in the exercise-induced fatigue group. The immunohistochemical staining was weaker and the mean optic densities decreased obviously in the fatigue group compared with those in the control group (P 〈 0.05). Conclusion 5-HT and TPH in the ventral horn of spinal cord might be involved in exercise-induced fatigue.
文摘Tryptophan(Trp) residues in a pullulanase were modified by N-bromosuccinimide(NBS). The results of the Spande method indicate that there are 18 Trp residues in the pullulanase and nine of them are located on the surface af the enzyme. Three of these Trp residues are nonessential residues which show the fastest reaction rate according to the Zou's plot. Two of the seven relative faster reacting residues are essential for the activity of the enzyme. The other eight are the slowest in the reaction rate or non-reactive residues for the reaction. The fluorescence and circular dichroism(CD) spectra of the pullulanase have been changed after the reaction with NBS. Potassium iodide(KI) and acrylamide also have remarkable influences on the fluorescence spectra of the pullulanase.
文摘A high sensitive flow-injection chemiluminescence (FI-CL) method for the determination of tryptophan has been developed. The method is based on the chemiluminescence reaction of galangin-potassium permanganate-tryptophan in polyphosphoric acid (PPA) media. Under the optimized conditions, tryptophan was determined in the range 0.05-10 μg/mL with the detection limit (3tr) of 5.0 × 10^-3 μg/mL. The relative standard deviation (RSD) was 1.0% for 11 replicate determinations of 1.0 μg/mL tryptophan. Three synthetic samples were determined selectively with recoveries in the range from 99.6% to 102.0% in the presence of other amino acids.
文摘In this work, a novel method was constructed to determine the enantiomeric composition of tryptophan (Trp) by bovine serum albumin (BSA) based on the fluorescence spectra of the receptor-ligand mixtures coupled with partial least squares (PLS-1) analysis. As a result the enantiomeric composition of Trp was accurately determined.