In this paper, the structure of cubic CaTiO3 (001) surfaces with CaO and TiO2 terminations has been studied from density functional calculations. It has been found that the Ca atom has the largest relaxation for bot...In this paper, the structure of cubic CaTiO3 (001) surfaces with CaO and TiO2 terminations has been studied from density functional calculations. It has been found that the Ca atom has the largest relaxation for both kinds of terminations, and the rumpling of the CaO-terminated surface is much larger than that of TiO2-terminated surface. Also we have found that the metal atom relaxes much more prominently than the O atom does in each layer. The CaO-terminated surface is slightly more energetically favourahle than the TiO2-terminated surface from the analysis of the calculated surface energy.展开更多
Surface rumpling is detrimental to high temperature protective coatings as it shortens their lifetime and leads to adhesion losses and unexpected corrosion degradation.The driving force and mass transport mechanism be...Surface rumpling is detrimental to high temperature protective coatings as it shortens their lifetime and leads to adhesion losses and unexpected corrosion degradation.The driving force and mass transport mechanism behind of rumpling remains to be clarified.In the present investigation,we subjected two types of nanocrystalline coating systems to avoid the influence of interdiffusion on rumpling study.One group was an ordinary nanocrystalline coating,and the other group was designed and prepared with trace oxygen by reactive magnetron sputtering.Systematic cyclic oxidation test at 1100°C was also car-ried out.Results show the ordinary nanocrystalline coating oxidized rapidly,which leads to the fast consumption of Al and the acceleration of phase transition in the coating.Meanwhile,severe surface rumpling is observed due to the stress release of nanocrystals through plastic deformation.Besides,the reactive doping of oxygen can significantly reduce the consumption process of Al in nanocrystalline coat-ing.The rumpling is controlled due to the improvement of coefficient of thermal expansion and Young’s modulus of the coating.Thereafter,the cyclic oxidation resistance is improved.展开更多
A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populati...A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populations were constructed by crossing with indica cultivars TN1 and Zhefu 802,respectively.Genetic analysis demonstrated that the phenotype was controlled by a single recessive nuclear gene.The closely linked simple sequence repeat(SSR) marker RM1155 was obtained from bulked segregant analysis.Subsequently,sequence tagged site(STS) markers were developed using the published rice genome sequence.Finally,RTL1 was located between an STS marker T1591 and an SSR marker RM1359,at the distances of 0.48 cM and 0.96 cM,respectively.These results will facilitate the cloning of the target gene in further studies.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10474057).
文摘In this paper, the structure of cubic CaTiO3 (001) surfaces with CaO and TiO2 terminations has been studied from density functional calculations. It has been found that the Ca atom has the largest relaxation for both kinds of terminations, and the rumpling of the CaO-terminated surface is much larger than that of TiO2-terminated surface. Also we have found that the metal atom relaxes much more prominently than the O atom does in each layer. The CaO-terminated surface is slightly more energetically favourahle than the TiO2-terminated surface from the analysis of the calculated surface energy.
基金supported by the National Natu-ral Science Foundation of China under Grant(Nos.51671053 and 51801021)the National Key R&D Program of China under Grant(No.2017YFB0306100)+1 种基金the Fundamental Research Funds for the Central Universities(No.N2102015)by the Ministry of Indus-try and Information Technology Project(No.MJ-2017-J-99).
文摘Surface rumpling is detrimental to high temperature protective coatings as it shortens their lifetime and leads to adhesion losses and unexpected corrosion degradation.The driving force and mass transport mechanism behind of rumpling remains to be clarified.In the present investigation,we subjected two types of nanocrystalline coating systems to avoid the influence of interdiffusion on rumpling study.One group was an ordinary nanocrystalline coating,and the other group was designed and prepared with trace oxygen by reactive magnetron sputtering.Systematic cyclic oxidation test at 1100°C was also car-ried out.Results show the ordinary nanocrystalline coating oxidized rapidly,which leads to the fast consumption of Al and the acceleration of phase transition in the coating.Meanwhile,severe surface rumpling is observed due to the stress release of nanocrystals through plastic deformation.Besides,the reactive doping of oxygen can significantly reduce the consumption process of Al in nanocrystalline coat-ing.The rumpling is controlled due to the improvement of coefficient of thermal expansion and Young’s modulus of the coating.Thereafter,the cyclic oxidation resistance is improved.
基金supported by the National Major Special Program of Breeding of Transgenetic Organisms New Variety(Grant Nos.2009ZX08001-022B,2009ZX08009-125B)National Natural ScienceFoundation of China(Grant No.30970171)
文摘A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populations were constructed by crossing with indica cultivars TN1 and Zhefu 802,respectively.Genetic analysis demonstrated that the phenotype was controlled by a single recessive nuclear gene.The closely linked simple sequence repeat(SSR) marker RM1155 was obtained from bulked segregant analysis.Subsequently,sequence tagged site(STS) markers were developed using the published rice genome sequence.Finally,RTL1 was located between an STS marker T1591 and an SSR marker RM1359,at the distances of 0.48 cM and 0.96 cM,respectively.These results will facilitate the cloning of the target gene in further studies.