Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
A real-life milk run system designing problem of an engine manufacturer adopted JIT(just-in-time)production is studied.In the process of milk run system planning and design,the supply base is identified and a supplier...A real-life milk run system designing problem of an engine manufacturer adopted JIT(just-in-time)production is studied.In the process of milk run system planning and design,the supply base is identified and a supplier site map is plotted for an arrangement of routes on which parts are periodically collected in a JIT manner from many scattered suppliers.With unit load designing,vehicle choosing and fleet sizing,pickup routing,vehicle assigning and scheduling problems are studied.Among these problems,a CVRP problem is identified and formulated as the key optimization in designing this milk run system,and it is solved through an optimization process.This tactical planning and optimization process gives a good solution to the real problem,and may shed light on the planning of similar systems.展开更多
This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite ...This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite slope are derived. The changing of wind speed, width and elevation of the berm are considered comprehensively. The wave run-up with various exceedance probability can be es-timated utilizing the distribution curves of irregular wave run-up.展开更多
In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-be...In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-beam model were studied atdifferent speeds for different sets of body parameters respectively. Furthermore, different body inertias were used in bounding.We found that running speed exerts effect on leg performance by means of centrifugal force. The centrifugal force can be understoodas an enhancement to the natural frequency of the spring-mass system. The disadvantage of body pitching may beoffset by the great increase in centrifugal force at high speed. The results also reveal that body mass distribution might not be themain reason for the difference in maximal running speeds of different animals.展开更多
The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylin...The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter, while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder.展开更多
Background:Compared to conventional racing shoes,Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by4%.The reduction is attributed to their lightweight,highly compliant,and resilient...Background:Compared to conventional racing shoes,Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by4%.The reduction is attributed to their lightweight,highly compliant,and resilient midsole foam and a midsole-embedded curved carbon-fiber plate.We investigated whether these shoes also could reduce the metabolic cost of moderate uphill(+3°) and downhill(-3°) grades.We tested the null hypothesis that,compared to conventional racing shoes,highly cushioned shoes with carbon-fiber plates would impart the same ~4%metabolic power(W/kg) savings during uphill and downhill running as they do during level running.Methods:After familiarization,16 competitive male runners performed six 5-min trials(2 shoes × 3 grades) in 2 Nike marathon racing-shoe models(Streak 6 and Vaporfly 4%) on a level,uphill(+3°),and downhill(-3°) treadmill at 13 km/h(3.61 m/s).We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4-5 and calculated metabolic power(W/kg) for each shoe model and grade combination.Results:Compared to the conventional shoes(Streak 6),the metabolic power in the Vaporfly 4% shoes was 3.83%(level),2.82%(uphill),and2.70%(downhill)less(all p <0.001).The percent of change in metabolic power for uphill running was less compared to level running(p=0.04;effect size(ES)=0.561) but was not statistically different between downhill and level running(p=0.17;ES=0.356).Conclusion:On a running course with uphill and downhill sections,the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall,compared to the savings on a perfectly level race course.展开更多
An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of f...An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.展开更多
In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition...In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition and subtraction of the crest and trough focusing waves. The analyzed results show that higher order harmonics can be generated because of the interaction of component waves. Nonlinearity increases with the inputted wave amplitude and the frequency width increment. Further, the wave run-up around the vertical circular cylinder is experimentally studied. It increases with the wave steepness and the relative cylinder diameter increase. However, the variations of wave run-up around the circular cylinder are different. The researches provide a reference for further numerical studies.展开更多
This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder wit...This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder. The non-linear boundary condition at the perforated wall is a prime focus in the study; energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall. Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column. The theoretical results of the wave run-up are compared with previous experimental data. Numerical results have also been obtained: when the ratio of the annular gap between the two cylinders to incident wavelength (b-a)/L≤0. 1, the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height.展开更多
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is a...Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave rim-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave rim-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.展开更多
The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a...The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.展开更多
The earthquake of March 11 of magnitude 9 offshore Tohoku, Japan, was followed by a tsunami wave with particularly destructive impact, over a coastal area extending approx. 850km along the Pacific Coast of Honshu Isla...The earthquake of March 11 of magnitude 9 offshore Tohoku, Japan, was followed by a tsunami wave with particularly destructive impact, over a coastal area extending approx. 850km along the Pacific Coast of Honshu Island. First arrival times and measurements and maximum height were recorded by the Japanese monitoring system (wherever there was no failure of the equipment). The maximum run-up is well evident in satellite images available through USGS, Google and other institutes. Moreover, personal observations of Prof. Lekkas were made during a field survey in March 2011. The results of the study of the tsunami impact and run-up show the variety of factors affecting the run-up, creating zones with similar phenomena, but also specific locations where run-up exceeds by far the run-up zone maximum values. This differentiation, observed also in the past by other authors, is here attributed to the general orientation of the coast, the distance from the tsunami generation area, bathymetry offshore, the coastline morphology and land geomorphology. In certain cases that funnelling and reflection effects in narrow gulfs parallel to the tsunami propagation vector were combined with narrow valleys onshore, peak run-up exceeded 20m, or even 40 m (Miyagi coastline, Ogatsu, Onagawa, etc).展开更多
We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a unifo...We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a uniform velocity while the lower plate continues to be at rest. The arising flow is referred to as run-up flow. The unsteady governing equations are solved as initial value problem using Laplace transform technique. The expression for velocity, shear stresses on both plates and discharge are obtained. The behavior of the velocity, shear stresses and mass flux has been discussed in detail with respect to variations in different governing flow parameters and is presented through graphs.展开更多
The scalar and vector running coupling constants are derived using the renormalization group method in the σ-ω model. The numerical values of the two running coupling constants are obtained and the physical meaning ...The scalar and vector running coupling constants are derived using the renormalization group method in the σ-ω model. The numerical values of the two running coupling constants are obtained and the physical meaning of the result is discussed.展开更多
Purpose: This study aims to compare the load and the length of previously ruptured and healthy Achilles tendon(AT) of a recreational runner who used different footfall patterns on each limb during running.Methods: A 4...Purpose: This study aims to compare the load and the length of previously ruptured and healthy Achilles tendon(AT) of a recreational runner who used different footfall patterns on each limb during running.Methods: A 41-year-old recreational athlete with a ruptured AT participated in this report. Two force plates and a high-speed motion capture system were used to collect ground reaction force and kinematic data in shod and barefoot running conditions. AT length was measured using ultrasonography and an infrared camera system. AT force was estimated as the active plantar flexion moment divided by AT moment arm during stance phase.Results: The participant used a rearfoot pattern on the affected limb and a forefoot/midfoot pattern on the unaffected limb during shod running,and a forefoot/midfoot pattern during barefoot running. There was no difference between the length of the affected and the unaffected AT. During shod running, the maximal AT force and loading rate were lower in the affected AT versus the unaffected AT. During barefoot running, the affected maximal AT force and loading rate were greater than the unaffected AT.Conclusion: Footfall patterns can be an adaptation to reduce the loading on a previously injured AT. It appears that runners may consider using a rearfoot footfall pattern during running to reduce the stress on the AT.展开更多
This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provid...This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provide verification data for numerical models of wave transformation in shoaling. surf and swash zones. This is the kind of data ih:lt flume experiments are unable to provide, and is collected in the highly controlled environment of CRF where extrinsic factors present in the field are not an issue. The experiments concerning wave trains are undertaken by use of existing wave generation software, and the run-up measurements are made with large experimental run-up gauges.展开更多
Background: Lower body positive pressure (LBPP) treadmills can be used in rehabilitation programs and/or to supplement tun mileage in healthy runners by reducing the effective body weight and impact associated with...Background: Lower body positive pressure (LBPP) treadmills can be used in rehabilitation programs and/or to supplement tun mileage in healthy runners by reducing the effective body weight and impact associated with running. The purpose of this study is to determine if body weight support influences the stride length (SL)-velocity as well as leg impact acceleration relationship during running. Methods: Subjects (n = 10, 21.4 ± 2.0 years, 72.4 ± 10.3 kg, 1.76 ± 0.09 m) completed 16 run conditions consisting of specific body weight support and velocity combinations. Velocities tested were 100%, 110%, 120%, and 130% of the preferred velocity (2.75± 0.36 m/s). Body weight support conditions consisted of 0, 60%,5, 70%, and 80% body weight support. SL and leg impact accelerations were determined using a light-weight accelerometer mounted on the surface of the anterior-distal aspect of the tibia. A 4 × 4 (velocity x body weight support) repeated measures ANOVA was used for each dependent variable (a = 0.05). Results: Neither SL nor leg impact acceleration were influenced by the interaction of body weight support and velocity (p 〉 0.05). SL was least during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). Leg impact acceleration was greatest during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). SL and leg impact accelerations increased with velocity regardless of support (p 〈 0.05). Conclusion: The relationships between SL and leg impact accelerations with velocity were not influenced by body weight support.展开更多
A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, s...A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, structure slope, incident wave angle, width of the berm and water depth on the berm and the wave run-up, empirical formulas for wave run-up on dike are proposed. Moreover, empirical formula on estimating the wave run-up on composite slope with multiple berms is presented for practical application of complex dike cross-section. The present study shows that the influence factors for wave overtopping are almost the same as those for wave run-up and the trend of the wave overtopping variation with main influence parameters is also similar to that for wave run-up. The trend of the wave overtopping variations can be well described by two main factors, i.e. the wave run-up and the crest freeboard of the structure. A new prediction method for wave overtopping is proposed for random waves. The proposed prediction formulas are applied to case study of over forty cases and the results show that the prediction methods are good enough for practical design purposes.展开更多
Ship waves are observed with wave-generating techniques by way of simulating express liners in the Zhujiang Delta.The analog test study of ship waves is conducted in a wave flume and a wave basin respectively. Thus, d...Ship waves are observed with wave-generating techniques by way of simulating express liners in the Zhujiang Delta.The analog test study of ship waves is conducted in a wave flume and a wave basin respectively. Thus, different wave elements and different incident angles of ship waves are decided; so are different slopes of protection, the plafform, width of plafform, and the influence over the ship wave run-up on protection from armor coat structure. The empirical relation-展开更多
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金The National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAH02A06)
文摘A real-life milk run system designing problem of an engine manufacturer adopted JIT(just-in-time)production is studied.In the process of milk run system planning and design,the supply base is identified and a supplier site map is plotted for an arrangement of routes on which parts are periodically collected in a JIT manner from many scattered suppliers.With unit load designing,vehicle choosing and fleet sizing,pickup routing,vehicle assigning and scheduling problems are studied.Among these problems,a CVRP problem is identified and formulated as the key optimization in designing this milk run system,and it is solved through an optimization process.This tactical planning and optimization process gives a good solution to the real problem,and may shed light on the planning of similar systems.
文摘This paper discusses the effect of berm width and elevation of composite slope on irregular wave run-up. Based on the data obtained from model tests, the formula and distribution of irregular wave run-up on composite slope are derived. The changing of wind speed, width and elevation of the berm are considered comprehensively. The wave run-up with various exceedance probability can be es-timated utilizing the distribution curves of irregular wave run-up.
文摘In this paper we investigated how the running speed would affect the dynamics of body pitching, and whether body inertiais important for animals. Passive trotting of spring-mass model and passive bounding of spring-beam model were studied atdifferent speeds for different sets of body parameters respectively. Furthermore, different body inertias were used in bounding.We found that running speed exerts effect on leg performance by means of centrifugal force. The centrifugal force can be understoodas an enhancement to the natural frequency of the spring-mass system. The disadvantage of body pitching may beoffset by the great increase in centrifugal force at high speed. The results also reveal that body mass distribution might not be themain reason for the difference in maximal running speeds of different animals.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11632012 and 41861144024)the National Basic Research Program of China(973 Program,Grant No.2014CB046203)
文摘The run-up on offshore structures induced by the steep regular wave is a highly nonlinear flow with a free surface. This article focuses on the investigation of the steep regular wave run-up on a single vertical cylinder by solving the Navier-Stokes equations. A numerical wave tank is established based on the open-source package to simulate the wave scattering induced by a vertical cylinder. The VOF method is applied to capture the large deformation and breaking of the free surface. The numerical model is validated by experimental results. The relative wave run-ups on the front face and the back face along the centerline of a cylinder are analyzed. The changes of the relative run-ups with the wave steepness, the relative diameter and the relative depth are studied. It is found that the relative run-ups on the front face and the back face of the cylinder depend mainly on the wave steepness and the relative diameter, while the dependence on the relative depth is weak. The empirical formulae are proposed to calculate the relative run-ups in terms of the wave steepness of incident regular waves and the relative diameter of a cylinder.
基金We thank Jackson Brill,Ross Wilkinson,Kyle Sterns,and James Tripp Hurt for help with recruiting and testing and Alena Grabowski for loaning us her Parvo system while ours was on the fritz.The running shoes used for this study were provided by Nike.
文摘Background:Compared to conventional racing shoes,Nike Vaporfly 4% running shoes reduce the metabolic cost of level treadmill running by4%.The reduction is attributed to their lightweight,highly compliant,and resilient midsole foam and a midsole-embedded curved carbon-fiber plate.We investigated whether these shoes also could reduce the metabolic cost of moderate uphill(+3°) and downhill(-3°) grades.We tested the null hypothesis that,compared to conventional racing shoes,highly cushioned shoes with carbon-fiber plates would impart the same ~4%metabolic power(W/kg) savings during uphill and downhill running as they do during level running.Methods:After familiarization,16 competitive male runners performed six 5-min trials(2 shoes × 3 grades) in 2 Nike marathon racing-shoe models(Streak 6 and Vaporfly 4%) on a level,uphill(+3°),and downhill(-3°) treadmill at 13 km/h(3.61 m/s).We measured submaximal oxygen uptake and carbon dioxide production during Minutes 4-5 and calculated metabolic power(W/kg) for each shoe model and grade combination.Results:Compared to the conventional shoes(Streak 6),the metabolic power in the Vaporfly 4% shoes was 3.83%(level),2.82%(uphill),and2.70%(downhill)less(all p <0.001).The percent of change in metabolic power for uphill running was less compared to level running(p=0.04;effect size(ES)=0.561) but was not statistically different between downhill and level running(p=0.17;ES=0.356).Conclusion:On a running course with uphill and downhill sections,the metabolic savings and hence performance enhancement provided by Vaporfly 4% shoes would likely be slightly less overall,compared to the savings on a perfectly level race course.
文摘An impedance analytical method (IAM) is developed to study the interaction of plane water wave with a slotted-wall caisson breakwater. The non-linear boundary condition at the slotted-wall is expressed in terms of flow resistance. A set of algebraic expressions are obtained for free surface elevation inside and outside chamber, and reflection coefficient. The prediction of the reflection coefficients shows that the relative widths of the chamber inducing the minimum reflection coefficient for a slotted-wall caisson breakwater are in a range of 0.10~0.20, which are smaller than that (0.15~0.25) for a perforated-wall caisson breakwater. The reflection coefficients and free surface elevation obtained by the present model are compared with that of laboratory experiments carried out by previous researchers.
基金supported bythe National Natural Science Foundation of China (Grant Nos.50379002 and 50921001)the New Century Excellent Talents in University (Grant No.NCET-05-0282)
文摘In this paper,the focused wave groups with different parameters and their actions on a vertical cylinder are experimentally studied. The harmonic wave characteristics of the focusing waves are analyzed by the addition and subtraction of the crest and trough focusing waves. The analyzed results show that higher order harmonics can be generated because of the interaction of component waves. Nonlinearity increases with the inputted wave amplitude and the frequency width increment. Further, the wave run-up around the vertical circular cylinder is experimentally studied. It increases with the wave steepness and the relative cylinder diameter increase. However, the variations of wave run-up around the circular cylinder are different. The researches provide a reference for further numerical studies.
文摘This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder. The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder. The non-linear boundary condition at the perforated wall is a prime focus in the study; energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall. Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column. The theoretical results of the wave run-up are compared with previous experimental data. Numerical results have also been obtained: when the ratio of the annular gap between the two cylinders to incident wavelength (b-a)/L≤0. 1, the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height.
基金supported by the National Natural Science Foundation of China (Grant No.10702042)the Scientific Reseasch Startup Foundation of Shanghai Jiao Tong University (Grant No. A2823B) the Shanghai Leading Academic Discipline Project (Grant No.B206)
文摘Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave rim-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave rim-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)
文摘The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.
文摘The earthquake of March 11 of magnitude 9 offshore Tohoku, Japan, was followed by a tsunami wave with particularly destructive impact, over a coastal area extending approx. 850km along the Pacific Coast of Honshu Island. First arrival times and measurements and maximum height were recorded by the Japanese monitoring system (wherever there was no failure of the equipment). The maximum run-up is well evident in satellite images available through USGS, Google and other institutes. Moreover, personal observations of Prof. Lekkas were made during a field survey in March 2011. The results of the study of the tsunami impact and run-up show the variety of factors affecting the run-up, creating zones with similar phenomena, but also specific locations where run-up exceeds by far the run-up zone maximum values. This differentiation, observed also in the past by other authors, is here attributed to the general orientation of the coast, the distance from the tsunami generation area, bathymetry offshore, the coastline morphology and land geomorphology. In certain cases that funnelling and reflection effects in narrow gulfs parallel to the tsunami propagation vector were combined with narrow valleys onshore, peak run-up exceeded 20m, or even 40 m (Miyagi coastline, Ogatsu, Onagawa, etc).
文摘We consider the flow of an incompressible viscous Maxwell fluid between two parallel plates, initially induced by a constant pressure gradient. The pressure gradient is withdrawn and the upper plate moves with a uniform velocity while the lower plate continues to be at rest. The arising flow is referred to as run-up flow. The unsteady governing equations are solved as initial value problem using Laplace transform technique. The expression for velocity, shear stresses on both plates and discharge are obtained. The behavior of the velocity, shear stresses and mass flux has been discussed in detail with respect to variations in different governing flow parameters and is presented through graphs.
文摘The scalar and vector running coupling constants are derived using the renormalization group method in the σ-ω model. The numerical values of the two running coupling constants are obtained and the physical meaning of the result is discussed.
基金supported by a grant from the University of Ostrava (SGS 6148), Czech Republic
文摘Purpose: This study aims to compare the load and the length of previously ruptured and healthy Achilles tendon(AT) of a recreational runner who used different footfall patterns on each limb during running.Methods: A 41-year-old recreational athlete with a ruptured AT participated in this report. Two force plates and a high-speed motion capture system were used to collect ground reaction force and kinematic data in shod and barefoot running conditions. AT length was measured using ultrasonography and an infrared camera system. AT force was estimated as the active plantar flexion moment divided by AT moment arm during stance phase.Results: The participant used a rearfoot pattern on the affected limb and a forefoot/midfoot pattern on the unaffected limb during shod running,and a forefoot/midfoot pattern during barefoot running. There was no difference between the length of the affected and the unaffected AT. During shod running, the maximal AT force and loading rate were lower in the affected AT versus the unaffected AT. During barefoot running, the affected maximal AT force and loading rate were greater than the unaffected AT.Conclusion: Footfall patterns can be an adaptation to reduce the loading on a previously injured AT. It appears that runners may consider using a rearfoot footfall pattern during running to reduce the stress on the AT.
基金This project was supported by the Flood and Coastal Defense Commission of UK(FD0204)the National Natural Science Foundation of China(59809001)
文摘This paper. details experiments undertaken in the UK Coastal Research Facility (CRF)at Hy draulies Research (HR), Wallingford, on transformation and run-up of wave trains. The purpose of these experiments is to provide verification data for numerical models of wave transformation in shoaling. surf and swash zones. This is the kind of data ih:lt flume experiments are unable to provide, and is collected in the highly controlled environment of CRF where extrinsic factors present in the field are not an issue. The experiments concerning wave trains are undertaken by use of existing wave generation software, and the run-up measurements are made with large experimental run-up gauges.
文摘Background: Lower body positive pressure (LBPP) treadmills can be used in rehabilitation programs and/or to supplement tun mileage in healthy runners by reducing the effective body weight and impact associated with running. The purpose of this study is to determine if body weight support influences the stride length (SL)-velocity as well as leg impact acceleration relationship during running. Methods: Subjects (n = 10, 21.4 ± 2.0 years, 72.4 ± 10.3 kg, 1.76 ± 0.09 m) completed 16 run conditions consisting of specific body weight support and velocity combinations. Velocities tested were 100%, 110%, 120%, and 130% of the preferred velocity (2.75± 0.36 m/s). Body weight support conditions consisted of 0, 60%,5, 70%, and 80% body weight support. SL and leg impact accelerations were determined using a light-weight accelerometer mounted on the surface of the anterior-distal aspect of the tibia. A 4 × 4 (velocity x body weight support) repeated measures ANOVA was used for each dependent variable (a = 0.05). Results: Neither SL nor leg impact acceleration were influenced by the interaction of body weight support and velocity (p 〉 0.05). SL was least during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). Leg impact acceleration was greatest during no body weight support (p 〈 0.05) but not different between 60%, 70%, and 80% support (p 〉 0.05). SL and leg impact accelerations increased with velocity regardless of support (p 〈 0.05). Conclusion: The relationships between SL and leg impact accelerations with velocity were not influenced by body weight support.
文摘A series of hydraulic model tests are carried out to investigate random wave run-up and overtopping on smooth, impermeable single slope and composite slope. Based on the analysis of the influences of wave steepness, structure slope, incident wave angle, width of the berm and water depth on the berm and the wave run-up, empirical formulas for wave run-up on dike are proposed. Moreover, empirical formula on estimating the wave run-up on composite slope with multiple berms is presented for practical application of complex dike cross-section. The present study shows that the influence factors for wave overtopping are almost the same as those for wave run-up and the trend of the wave overtopping variation with main influence parameters is also similar to that for wave run-up. The trend of the wave overtopping variations can be well described by two main factors, i.e. the wave run-up and the crest freeboard of the structure. A new prediction method for wave overtopping is proposed for random waves. The proposed prediction formulas are applied to case study of over forty cases and the results show that the prediction methods are good enough for practical design purposes.
文摘Ship waves are observed with wave-generating techniques by way of simulating express liners in the Zhujiang Delta.The analog test study of ship waves is conducted in a wave flume and a wave basin respectively. Thus, different wave elements and different incident angles of ship waves are decided; so are different slopes of protection, the plafform, width of plafform, and the influence over the ship wave run-up on protection from armor coat structure. The empirical relation-