Helicopter blade running elevation measurement is an important measure target in helicopter blade dynamic balance experimentation. The elevation influences the helicopter' s security and other performance capabilitie...Helicopter blade running elevation measurement is an important measure target in helicopter blade dynamic balance experimentation. The elevation influences the helicopter' s security and other performance capabilities. In testing, however, it has been difficult to measure the elevation when the rotor reaches high speeds. To get a simple, fast and highly accurate measurement system, photo electricity technology was applied to measuring the blade running elevation. Discussed is the measurement principle of blade running elevation, tire design of the measurement system and analysis of the measurement precision.展开更多
This paper focuses on aeroelastic prediction and analysis for a transonic fan rotor with only its“hot”(running)blade shape available,which is often the case in practical engineering such as in the design stage.Based...This paper focuses on aeroelastic prediction and analysis for a transonic fan rotor with only its“hot”(running)blade shape available,which is often the case in practical engineering such as in the design stage.Based on an in-house and well-validated CFD solver and a hybrid structural finite element modeling/modal approach,three main aspects are considered with special emphasis on dealing with the“hot”blade shape.First,static aeroelastic analysis is presented for shape transformation between“cold”(manufacturing)and“hot”blades,and influence of the dynamic variation of“hot”shape on evaluated aerodynamic performance is investigated.Second,implementation of the energy method for flutter prediction is given and both a regularly used fixed“hot”shape and a variable“hot”shape are considered.Through comparison,influence of the dynamic variation of“hot”shape on evaluated aeroelastic stability is also investigated.Third,another common way to predict flutter,time-domain method,is used for the same concerned case,from which the predicted flutter characteristics are compared with those from the energy method.A well-publicized axial-flow transonic fan rotor,Rotor 67,is selected as a typical example,and the corresponding numerical results and discussions are presented in detail.展开更多
文摘Helicopter blade running elevation measurement is an important measure target in helicopter blade dynamic balance experimentation. The elevation influences the helicopter' s security and other performance capabilities. In testing, however, it has been difficult to measure the elevation when the rotor reaches high speeds. To get a simple, fast and highly accurate measurement system, photo electricity technology was applied to measuring the blade running elevation. Discussed is the measurement principle of blade running elevation, tire design of the measurement system and analysis of the measurement precision.
基金This study was supported by National Natural Science Foundation of China(No.11872212),China Postdoctoral Science Foundation Grant(No.2019M650112),Natural Science Foundation of Jiangsu Province,China(No.BK20190386)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘This paper focuses on aeroelastic prediction and analysis for a transonic fan rotor with only its“hot”(running)blade shape available,which is often the case in practical engineering such as in the design stage.Based on an in-house and well-validated CFD solver and a hybrid structural finite element modeling/modal approach,three main aspects are considered with special emphasis on dealing with the“hot”blade shape.First,static aeroelastic analysis is presented for shape transformation between“cold”(manufacturing)and“hot”blades,and influence of the dynamic variation of“hot”shape on evaluated aerodynamic performance is investigated.Second,implementation of the energy method for flutter prediction is given and both a regularly used fixed“hot”shape and a variable“hot”shape are considered.Through comparison,influence of the dynamic variation of“hot”shape on evaluated aeroelastic stability is also investigated.Third,another common way to predict flutter,time-domain method,is used for the same concerned case,from which the predicted flutter characteristics are compared with those from the energy method.A well-publicized axial-flow transonic fan rotor,Rotor 67,is selected as a typical example,and the corresponding numerical results and discussions are presented in detail.