期刊文献+
共找到964篇文章
< 1 2 49 >
每页显示 20 50 100
Assessment of runoff changes in the sub-basin of the upper reaches of the Yangtze River basin, China based on multiple methods
1
作者 WANG Xingbo ZHANG Shuanghu TIAN Yiman 《Journal of Arid Land》 SCIE CSCD 2024年第4期461-482,共22页
Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in... Quantitative assessment of the impact of climate variability and human activities on runoff plays a pivotal role in water resource management and maintaining ecosystem integrity.This study considered six sub-basins in the upper reaches of the Yangtze River basin,China,to reveal the trend of the runoff evolution and clarify the driving factors of the changes during 1956–2020.Linear regression,Mann-Kendall test,and sliding t-test were used to study the trend of the hydrometeorological elements,while cumulative distance level and ordered clustering methods were applied to identify mutation points.The contributions of climate change and human disturbance to runoff changes were quantitatively assessed using three methods,i.e.,the rainfall-runoff relationship method,slope variation method,and variable infiltration capacity(Budyko)hypothesis method.Then,the availability and stability of the three methods were compared.The results showed that the runoff in the upper reaches of the Yangtze River basin exhibited a decreasing trend from 1956 to 2020,with an abrupt change in 1985.For attribution analysis,the runoff series could be divided into two phases,i.e.,1961–1985(baseline period)and 1986–2020(changing period);and it was found that the rainfall-runoff relationship method with precipitation as the representative of climate factors had limited usability compared with the other two methods,while the slope variation and Budyko hypothesis methods had highly consistent results.Different factors showed different effects in the sub-basins of the upper reaches of the Yangtze River basin.Moreover,human disturbance was the main factor that contributed to the runoff changes,accounting for 53.0%–82.0%;and the contribution of climate factors to the runoff change was 17.0%–47.0%,making it the secondary factor,in which precipitation was the most representative climate factor.These results provide insights into how climate and anthropogenic changes synergistically influence the runoff of the upper reaches of the Yangtze River basin. 展开更多
关键词 economic belt runoff change influencing assessment CLIMATE human activities
下载PDF
Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates
2
作者 Shanshan Cai Lei Sun +7 位作者 Wei Wang Yan Li Jianli Ding Liang Jin Yumei Li Jiuming Zhang Jingkuan Wang Dan Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1703-1717,共15页
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How st... Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland. 展开更多
关键词 dissolved organic matter black soil surface runoff AGGREGATES fluorescence spectrum
下载PDF
Responses of runoff to changes in climate and human activities in the Liuhe River Basin, China
3
作者 LI Mingqian WANG He +3 位作者 DU Wei GU Hongbiao ZHOU Fanchao CHI Baoming 《Journal of Arid Land》 SCIE CSCD 2024年第8期1023-1043,共21页
Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ec... Since the 1950s,numerous soil and water conservation measures have been implemented to control severe soil erosion in the Liuhe River Basin(LRB),China.While these measures have protected the upstream soil and water ecological environment,they have led to a sharp reduction in the downstream flow and the deterioration of the river ecological environment.Therefore,it is important to evaluate the impact of soil and water conservation measures on hydrological processes to assess long-term runoff changes.Using the Soil and Water Assessment Tool(SWAT)models and sensitivity analyses based on the Budyko hypothesis,this study quantitatively evaluated the effects of climate change,direct water withdrawal,and soil and water conservation measures on runoff in the LRB during different periods,including different responses to runoff discharge,hydrological regime,and flood processes.The runoff series were divided into a baseline period(1956-1969)and two altered periods,i.e.,period 1(1970-1999)and period 2(2000-2020).Human activities were the main cause of the decrease in runoff during the altered periods,contributing 86.03%(-29.61 mm),while the contribution of climate change was only 13.70%(-4.70 mm).The impact of climate change manifests as a decrease in flood volume caused by a reduction in precipitation during the flood season.Analysis of two flood cases indicated a 66.00%-84.00%reduction in basin runoff capacity due to soil and water conservation measures in the upstream area.Soil and water conservation measures reduced the peak flow and total flood volume in the upstream runoff area by 77.98%and 55.16%,respectively,even with nearly double the precipitation.The runoff coefficient in the reservoir area without soil and water conservation measures was 4.0 times that in the conservation area.These results contribute to the re-evaluation of soil and water conservation hydrological effects and provide important guidance for water resource planning and water conservation policy formulation in the LRB. 展开更多
关键词 runoff soil and water conservation climate variability FLOOD human activities Liuhe River Basin
下载PDF
Runoff change in the Yellow River Basin of China from 1960 to 2020 and its driving factors
4
作者 WANG Baoliang WANG Hongxiang +3 位作者 JIAO Xuyang HUANG Lintong CHEN Hao GUO Wenxian 《Journal of Arid Land》 SCIE CSCD 2024年第2期168-194,共27页
Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alte... Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River. 展开更多
关键词 Budyko theory hydrological regime attribution analysis ecological responses Yellow River climate change human activity runoff
下载PDF
The changes in the annual distribution of mountain runoff during the period of 1965-2018 in Hexi Corridor,Northwest China
5
作者 Yan Luo ZhiXiang Lu +2 位作者 Qi Feng Meng Zhu JinBo Zhang 《Research in Cold and Arid Regions》 CSCD 2024年第2期73-83,共11页
The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines... The annual distribution characteristics of river runoff in arid regions have significant implications for water resource stability and management.Based on the mountain runoff data from 1965 to 2018,this study examines the annual change characteristics of monthly runoff of the Shiyang River Basin,Heihe River Basin,and Shule River Basin in the Hexi Corridor,Northwest China.Many indexes are used and analyzed,including the coefficient of variance,the complete regulation coefficient,the concentration degree and concentration period,the magnitude of change,the skewness coefficient,and the kurtosis coefficient of the annual distribution curves.The results reveal the following:(1)The inhomogeneity of annual runoff distribution in the Taolai River and the rivers to the west of it,except the Shiyou River,show an increasing trend.Conversely,the inhomogeneity of the rivers to the east of the Taolai River generally show a downward trend,but the coefficient of variance value is still very high.(2)In the Shiyang River Basin,the annual distribution of the concentration period is characterized by a relatively discrete pattern.Conversely,the Heihe River Basin exhibits a relatively concentrated pattern,and the distribution pattern of the Shule River Basin is quite different.Notably,all concentration periods in the three basins have shifted backward after the 2000s.(3)The Shiyang River Basin exhibits disordered annual distribution curves of runoff in different years.In contrast,the Heihe River Basin presents a typical‘single-peak’pattern with a prominent right-skewed.The Shule River Basin has regular distribution curves,with a gradually significant‘double-peak’pattern from east to west.Overall,there has been a slight change in runoff in the Shiyang River Basin,while the Heihe River Basin and Shule River Basin have experienced significant increases in runoff.The annual distribution curves of runoff in the Liyuan River and the rivers to the east of it exhibit a gentle peak pattern,and the appearance probability of extreme runoff during the year is low.Conversely,the rivers to the west of the Liyuan River,excluding the Danghe River,display a sharp peak and thick tail pattern,indicating that the appearance probability of extreme runoff during the year is high.These findings have practical implications for the planning and management of water resources in the Hexi Corridor.Moreover,they provide a solid foundation for predicting future changes in regional water resources. 展开更多
关键词 Hexi Corridor Inland rivers Mountain runoff Annual distribution characteristics of runoff
下载PDF
Glacier area change and its impact on runoff in the Manas River Basin,Northwest China from 2000 to 2020
6
作者 WANG Tongxia CHEN Fulong +5 位作者 LONG Aihua ZHANG Zhengyong HE Chaofei LYU Tingbo LIU Bo HUANG Yanhao 《Journal of Arid Land》 SCIE CSCD 2024年第7期877-894,共18页
Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this s... Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins. 展开更多
关键词 glacier area glacial runoff climate change glacier boundary extraction distributed degree-day model Manas River Basin
下载PDF
Comparative Assessment of Impacts of Future Climate Change on Runoff in Upper Daqinghe Basin,China
7
作者 INGABIRE Romaine CHANG Yuru +3 位作者 LIU Xia CAO Bo UMUGWANEZA Adeline SHEN Yanjun 《Chinese Geographical Science》 SCIE CSCD 2024年第3期564-578,共15页
Assessing runoff changes is of great importance especially its responses to the projected future climate change on local scale basins because such analyses are generally done on global and regional scales which may le... Assessing runoff changes is of great importance especially its responses to the projected future climate change on local scale basins because such analyses are generally done on global and regional scales which may lead to generalized conclusions rather than specific ones.Climate change affected the runoff variation in the past in the upper Daqinghe Basin,however,the climate was mainly considered uncertain and still needs further studies,especially its future impacts on runoff for better water resources management and planning.Integrated with a set of climate simulations,a daily conceptual hydrological model(MIKE11-NAM)was applied to assess the impact of climate change on runoff conditions in the Daomaguan,Fuping and Zijingguan basins in the upper Daqinghe Basin.Historical hydrological data(2008–2017)were used to evaluate the applicability of the MIKE11-NAM model.After bias correction,future projected climate change and its impacts on runoff(2025–2054)were analysed and compared to the baseline period(1985–2014)under three shared social economic pathways(SSP1-2.6,SSP2-4.5,and SSP5-8.5)scenarios from Coupled Model Intercomparison Project Phase 6(CMIP6)simulations.The MIKE-11 NAM model was applicable in all three Basins,with both R^(2)and Nash-Sutcliffe Efficiency coefficients greater than 0.6 at daily scale for both calibration(2009–2011)and validation(2012–2017)periods,respectively.Although uncertainties remain,temperature and precipitation are projected to increase compared to the baseline where higher increases in precipitation and temperature are projected to occur under SSP2-4.5 and SSP5-8.5 scenarios,respectively in all the basins.Precipitation changes will range between 12%–19%whereas temperature change will be 2.0℃–2.5℃ under the SSP2-4.5 and SSP5-8.5 scenarios,respectively.In addition,higher warming is projected to occur in colder months than in warmer months.Overall,the runoff of these three basins is projected to respond to projected climate changes differently because runoff is projected to only increase in the Fuping basin under SSP2-4.5 whereas decreases in both Daomaguan and Zijingguan Basins under all scenarios.This study’s findings could be important when setting mitigation strategies for climate change and water resources management. 展开更多
关键词 runoff climate change MIKE11-NAM model Coupled Model Intercomparison Project Phase 6(CMIP6) upper Daqinghe Basin China
下载PDF
Phosphorus losses via surface runoff in rice-wheat cropping systems as impacted by rainfall regimes and fertilizer applications 被引量:8
8
作者 LIU Jian ZUO Qiang +6 位作者 ZHAI Li-mei LUO Chun-yan LIU Hong-bin WANG Hong-yuan LIU Shen ZOU Guo-yuan REN Tian-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第3期667-677,共11页
Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(O... Phosphorus(P) losses from agricultural soils contribute to eutrophication of surface waters. This field plot study investigated effects of rainfall regimes and P applications on P loss by surface runoff from rice(Oryza sativa L.) and wheat(Triticum aestivum L.) cropping systems in Lake Taihu region, China. The study was conducted on two types of paddy soils(Hydromorphic at Anzhen site, Wuxi City, and Degleyed at Xinzhuang site, Changshu City, Jiangsu Province) with different P status, and it covered 3 years with low, high and normal rainfall regimes. Four rates of mineral P fertilizer, i.e., no P(control), 30 kg P ha^(–1) for rice and 20 kg P ha^(–1) for wheat(P_(30+20)), 75 plus 40(P_(75+40)), and 150 plus 80(P_(150+80)), were applied as treatments. Runoff water from individual plots and runoff events was recorded and analyzed for total P and dissolved reactive P concentrations. Losses of total P and dissolved reactive P significantly increased with rainfall depth and P rates(P〈0.0001). Annual total P losses ranged from 0.36–0.92 kg ha^–1 in control to 1.13–4.67 kg ha^–1 in P150+80 at Anzhen, and correspondingly from 0.36–0.48 kg h^–1 to 1.26–1.88 kg ha^–1 at Xinzhuang, with 16–49% of total P as dissolved reactive P. In particular, large amounts of P were lost during heavy rainfall events that occurred shortly after P applications at Anzhen. On average of all P treatments, rice growing season constituted 37–86% of annual total P loss at Anzhen and 28–44% of that at Xinzhuang. In both crop seasons, P concentrations peaked in the first runoff events and decreased with time. During rice growing season, runoff P concentrations positively correlated(P〈0.0001) with P concentrations in field ponding water that was intentionally enclosed by construction of field bund. The relative high P loss during wheat growing season at Xinzhuang was due to high soil P status. In conclusion, P should be applied at rates balancing crop removal(20–30 kg P ha^–1 in this study) and at time excluding heavy rains. Moreover, irrigation and drainage water should be appropriately managed to reduce runoff P losses from rice-wheat cropping systems. 展开更多
关键词 double cropping system intensive agriculture Lake Taihu region phosphorus loss surface runoff water quality
下载PDF
Response of runoff to climate change in the area of runoff yield in upstream Shiyang River Basin,Northwest China:A case study of the Xiying River 被引量:3
9
作者 Shu-hong Song Zhen-long Nie +3 位作者 Xin-xin Geng Xue Shen Zhe Wang Pu-cheng Zhu 《Journal of Groundwater Science and Engineering》 2023年第1期89-96,共8页
The objective of this study was to analyze the response of runoff in the area of runoff yield of the upstream Shiyang River basin to climate change and to promote sustainable development of regional water resources an... The objective of this study was to analyze the response of runoff in the area of runoff yield of the upstream Shiyang River basin to climate change and to promote sustainable development of regional water resources and ecological environment.As the biggest tributary of the Shiyang River,Xiying River is the only hydrological station(Jiutiaoling) that has provincial natural river and can achieve long time series monitoring data in the basin.The data obtained from this station is representative of natural conditions because it has little human activites.This study built a regression model through identifying the characteristics of runoff and climate change by using Mann-Kendall nonparametric statistical test,cumulative anomaly,and correlation analysis.The results show that the average annual runoff is 320.6 million m3/a with the coefficient of variation of 0.18 and shows slightly decrease during 1956-2020.It has a significant positive correlation the average annual precipitation(P<0.01).Runoff is sensitive to climate change,and the climate has becoming warm and wet and annual runoff has entering wet period from 2003.Compared to the earlier period(1955-2000),the increases of average annual temperature,precipitation and runoff in recent two decades were 15%,9.3%,and 7.8%,respectively.Runoff in the Shiyang River is affected by temperature and precipitation among climate factors,and the simulation results of the runoff-climate response model(R=0.0052P-0.1589T+2.373) indicate that higher temperature leads to a weakening of the ecological regulation of surface runoff in the flow-producing area. 展开更多
关键词 runoff Heating and wetting Mann-Kendall test Regression model Ecological function
下载PDF
Development of an Internet of Things (IoT) System for Measuring Agricultural Runoff Quantity and Quality
10
作者 José O. Payero Michael W. Marshall +5 位作者 Ali Mirzakhani Nafchi Ahmad Khalilian Bhupinder S. Farmaha Rebecca Davis Wesley Porter George Vellidis 《Agricultural Sciences》 2021年第5期584-601,共18页
Runoff is an important component of the water balance of agricultural fields. Accurate measurement or estimation of agricultural runoff is important due to its potential impact on water quantity and quality. Since run... Runoff is an important component of the water balance of agricultural fields. Accurate measurement or estimation of agricultural runoff is important due to its potential impact on water quantity and quality. Since runoff from agricultural fields is sporadic and is often associated with irrigation and/or intense rainfall events, manually measuring runoff and collecting water samples for water quality analysis during runoff events is inconvenient and impractical. In the fall of 2017, a field site was selected at the Clemson University Edisto Research and Education Center with the objective of developing, constructing, and testing an Internet of things (IoT) flume system to automatically measure runoff and collect water samples. In 2018, an automatic IoT system was developed and installed consisting of six stainless steel H-flumes (22.9-cm), which measured runoff from six adjacent research plots under two different cultural regimes (cover crop and no cover crop). An electronic eTape sensor was installed in the flume and used to measure the water level or the flume’s head. Open-source electronic (Arduino) devices and a cloud-based platform were then used to create a wireless sensor network and IoT system to automatically record the amount of runoff (hydrograph) coming from each section, collect water samples and transmit the data to a Cloud server (Thingspeak.com) where the data can be viewed remotely in real-time. The IoT flume system has been operating successfully and reliably for more than two years. 展开更多
关键词 FLUME runoff Water Quality Cover Crop EROSION
下载PDF
Critical thresholds for stage division of water erosion process in different ridge systems in mollisol region of Northeast China
11
作者 JIAO Jian QIN Wei +3 位作者 LI Kun-heng XU Hai-chao YIN Zhe HOU Shu-yan 《Journal of Mountain Science》 SCIE CSCD 2023年第6期1540-1560,共21页
Extreme rainfall events on a slope under ridge tillage systems cause concentrated stream soil loss.To analyse the critical thresholds for different stages of water erosion process of ridge systems,simulated rainfall-e... Extreme rainfall events on a slope under ridge tillage systems cause concentrated stream soil loss.To analyse the critical thresholds for different stages of water erosion process of ridge systems,simulated rainfall-erosion experiments for the contour wide ridge(CWR),contour narrow ridge(CNR),longitudinal wide ridge(LWR),and longitudinal narrow ridge(LNR)were conducted under four rainfall intensities,with slope gradients of 3°and 5°.For the runoff event,the runoff depth order was LNR>LWR>CWR>CNR;the soil loss order was CNR>LNR>CWR>LWR.The product of slope factor(S)and rainfall erosivity(R)or runoff depth(D),can be adopted as critical thresholds for different stages of runoff and soil erosion process.For the longitudinal ridge systems,R values were provided for LWR and LNR and were the beginning of sheet flow,whereas the product of rainfall erosivity and slope factor(RS)values were provided for LWR and LNR as the beginning of the accelerated concentrated flow.For the contour ridge systems,R values were provided for CWR and CNR as critical thresholds for the beginning of overflow.The product of runoff depth and slope factor(DS)values were 9.98 and 7.73 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of ridge failure;the DS values were 18.45 and 12.75 mm for CWR and CNR,respectively,and were critical thresholds for the beginning of the formation of ephemeral gully erosion.The critical thresholds can distinguish different stages of soil erosion process modelling. 展开更多
关键词 runoff Soil loss THRESHOLD Ridge failure Artificial rainfall simulation
下载PDF
Field experiments on quantifying the contributions of Coreopsis canopies and roots to controlling runoff and erosion on steep loess slopes
12
作者 GONG Yu-wei YU Hai-jun +3 位作者 TIAN Pei GUO Wen-zhao CHEN Lin SHEN Ding-tao 《Journal of Mountain Science》 SCIE CSCD 2023年第5期1402-1423,共22页
Grass recovery is often implemented in the loess area of China to control erosion.However,the effect mechanisms of grass cover on runoff erosion dynamics on steep loess hillslopes is still not clear.Taking the typical... Grass recovery is often implemented in the loess area of China to control erosion.However,the effect mechanisms of grass cover on runoff erosion dynamics on steep loess hillslopes is still not clear.Taking the typical forage species(Coreopsis)in semiarid areas as subject,this study quantified the effects of canopies and roots on controlling slope runoff and erosion.A series of field experiments were conducted in a loess hilly region of China.Field plots(5 m length,2 m width,25°slope gradient)constructed with three ground covers(bare soil;Coreopsis with intact grass;only roots of Coreopsis),were applied with simultaneous simulated rainfall(60mm h^(-1))and upslope inflow(10,30,50,70,90L min^(-1)).The results showed that compared with bare soil,intact grass significantly reduced runoff and soil loss rates by 16.6% and 62.4% on average,and decreased soil erodibility parameter by 66.3%.As inflow rate increased,the reductions in runoff and soil loss rates increased from 2.93 to 14.00 L min^(-1)and 35.11 to 121.96 g m^(-2)min^(-1),respectively.Canopies relatively contributed 66.7% to lowering flow velocity,turbulence,weakening erosive force and increasing hydraulic resistance.Roots played a predominant role in reducing soil loss and enhancing soil antierodibility,with relative contributions of 78.8% and 73.8%.Furthermore,the maximum erosion depth reduced by Coreopsis was at the upper slope section which was previously eroded the most.These results demonstrated the efficiency of Coreopsis cover in controlling runoff and erosion on steep loess slopes,especially under large inflow rates and at upper slope sections.We suggest protecting Coreopsis with intact grass at upper slope sections,while the aboveground grass biomass can be used for grazing or harvesting at middle and lower slope sections,with roots reserved. 展开更多
关键词 Steep loess hillslopes Soil erosion Rill development runoff hydraulics Spatial variations Coreopsis
下载PDF
Influence of water conservancy project on runoff in the source region of the Yellow River and wetland changes in the Lakeside Zone,China
13
作者 Ming-nan Yang Liang Zhu +2 位作者 Jing-tao Liu Yu-xi Zhang Bing Zhou 《Journal of Groundwater Science and Engineering》 2023年第4期333-346,共14页
The source area of the Yellow River(SAYR),located above the Huangheyan hydrological station,is important for ecological preservation and water source conservation in the Yellow River Basin.In this area,the impact of w... The source area of the Yellow River(SAYR),located above the Huangheyan hydrological station,is important for ecological preservation and water source conservation in the Yellow River Basin.In this area,the impact of water conservation projects on the hydrology and the ecological environment is pivotal in protecting water resources and alpine vegetation ecosystems.This study investigates the impact of the Yellow River Source Hydropower Station on the runoff and ecological evolution of the SAYR,along with the underlying mechanism,using extensive datasets encompassing long-term meteorological,hydrological and remote sensing data from various time periods.Results show that,over the long term,precipitation is the primary factor driving runoff variations in the SAYR.Nevertheless,from 1990 to 2020,there is a notably inconsistent relationship between precipitation and runoff.After the completion of the Yellow River Source Hydropower Station in 2001,the water level of Eling Lake experienced and elevation of 2–3 m,leading to a gradual recovery of runoff.In addition,the basin's water balance shifted from a negative to a positive equilibrium,oscillating with changes in lake water levels.Consequently,the overflow zone of the Tangchama alluvial–proluvial fan in the upper reaches of the lakeshore shifted by 500 m,and marsh wetlands expanded by 20.78 km^(2).The increased storage of lakes and groundwater in the SAYR is the key controlling factor for the runoff recovery,changes in the basin's water balance,and enhancements in lakeshore vegetation ecology.Under the geological background of the Qinghai–Tibet Plateau's upliftment and intensified upstream river erosion,the basin experienced a substantial water imbalance due to declining discharge base levels,which is the most critical factor behind runoff attenuation in the SAYR towards the end of the 20th century.The construction of the hydropower station objectively raised the drainage base level of the basin,thereby positively contributing to the preservation of water balance,runoff stability,and the enhancement of swamps and wetlands along the lakeshore. 展开更多
关键词 GROUNDWATER Discharge baseline Wetland ecology runoff Climate change
下载PDF
SCS-CN and GIS-Based Approach for Estimating Runoff in Western Region of Saudi Arabia
14
作者 Abed Alataway 《Journal of Geoscience and Environment Protection》 2023年第3期30-43,共14页
Designing reservoir operations, hydraulic structure, and soil erosion management techniques all require an estimation of a potential runoff. Accurate runoff in-formation is typically scarce in Saudi Arabia—a signific... Designing reservoir operations, hydraulic structure, and soil erosion management techniques all require an estimation of a potential runoff. Accurate runoff in-formation is typically scarce in Saudi Arabia—a significant challenge for hydrologists. Wadi-Rahjan catchment in Western Saudi Arabia has been taken as a case study to determine the potential runoff estimates. The study integrates the soil conservation service curve number (SCN-CN) technique, remote sensing (RS), and geographical information system (GIS). Critical parameters including the digital elevation model (DEM), land use/land cover (LULC), hydrologic soil groups (HSGs), and rainfall data were also employed. The curve number (CN), which shows the catchment’s reaction to a storm was estimated based on LULC and HSG layers. The CN map obtained and rainfall data were employed in the GIS-based SCS-CN model to develop the potential runoff map. Based on the results of calculations, the study area is classified into three HSGs, namely, B, C, D. Averagely, CN for a normal condition is 90 while wet and dry conditions are 97 and 80, respectively. Results obtained from the SCS-CN method’s calculations reveal a yearly runoff result that varies from 194 mm to 295 mm. A higher percentage of runoff water (35%) in a runoff range from 289 to 295 mm, followed by 24%, ranged 269 to 288 mm. An interesting rainfall-runoff regression evaluation reveals a good 0.90 correlation. Other watersheds in Saudi Arabia may use this method for planning and development. 展开更多
关键词 runoff SCS-CN GIS Remote Sensing
下载PDF
Methodology for the Calculation of the Runoff Coefficient with the Arrangement Tirado
15
作者 Victor Rogelio Tirado Picado Lisseth Carolina Blandón Chavarria 《Open Journal of Applied Sciences》 CAS 2023年第5期659-671,共13页
For this research work, an adequate methodology was sought for the calculation of the runoff coefficient with the Tirado arrangement. To achieve this, first, the variables that affect the runoff coefficient were ident... For this research work, an adequate methodology was sought for the calculation of the runoff coefficient with the Tirado arrangement. To achieve this, first, the variables that affect the runoff coefficient were identified, then the model was described with the Tirado arrangement, and as a third part for the calculation of the runoff coefficient, the Tirado model is proposed. From the theory for the calculation of the runoff coefficient, the equation of the weighted coefficients and the expression of Nadal were manipulated, resulting in the following relationship , considering this as the expression for the arrangement Tirado. The expression is tested  with different intensities, the magnitudes correspond to 150, 200, 250 and 300 mm/hrs, resulting in runoff coefficient 0.82, 0.87, 0.89, 0.91 respectively. This means that, the higher the intensity, the runoff coefficient will be higher, logically the characteristics of the basin affect that this coefficient has variation in the space studied. 展开更多
关键词 runoff Coefficient Land Use Soil Type Land Slope NADAL RAWLS
下载PDF
Runoff-Water Properties from Various Soils as Affected by Struvite-Phosphorus Source and Water Type
16
作者 Machaela Morrison Kristofor R. Brye +2 位作者 Gerson Drescher Jennie Popp Lisa S. Wood 《Journal of Environmental Protection》 2023年第10期789-823,共35页
Struvite (MgNH<sub>4</sub>PO<sub>4</sub>?6H<sub>2</sub>O) can be produced from municipal wastewater and has been shown to be an alternative fertilizer-phosphorus (P) source for vari... Struvite (MgNH<sub>4</sub>PO<sub>4</sub>?6H<sub>2</sub>O) can be produced from municipal wastewater and has been shown to be an alternative fertilizer-phosphorus (P) source for various crops, but little is known about the runoff-water-quality implications from soil-applied struvite. The objective of this study was to evaluate the effects of soil [Creldon (Oxyaquic Fragiudalfs), Dapue (Fluventic Hapludolls), Roxana (Typic Udifluvents), and Calloway (Aquic Fraglossudalfs) series], fertilizer-P source [synthetically produced electrochemically precipitated struvite (ECSTsyn), real-wastewater-derived ECST (ECSTreal), chemically precipitated struvite (CPST), and monoammonium phosphate (MAP)], and water source (rainwater, groundwater, and struvite-removed real wastewater) over time on runoff-water-quality parameters from laboratory-conducted, rainfall-runoff simulations. Mesh tea bags containing each soil-fertilizer treatment combination were rained on with each water source (Trial 1), incubated for 6 months, and rained on again (Trial 2) to evaluate runoff-water quality. Struvite fertilizers had similar runoff-water-quality properties to those from MAP. In Trial 1, runoff total P (TP) concentration differences (i.e., soil-fertilizer-water-type response minus control response minus blank response) from ECSTsyn or ECSTreal were 1 to 5 times larger than MAP and CPST for all water-soil-fertilizer-P source treatment combinations, except for the Creldon-groundwater and Roxana-wastewater combinations. In both trials, runoff TP decreased over time in all water-soil and soil-fertilizer-P source treatment combinations, except for the Roxana-CPST combination where TP increased over time by 46%. The similar water-quality responses from the struvite fertilizers among the various soils and water types compared to MAP suggest that struvite has similar runoff-water-quality implications as at least one widely used, commercially available fertilizer-P source. 展开更多
关键词 Rainfall Simulation runoff STRUVITE PHOSPHORUS Water Quality
下载PDF
An Evaluation of Manure Management Strategies, Phosphorus Surface Runoff Potential and Water Usage at an Arkansas Discovery Dairy Farm
17
作者 James M. Burke Mike B. Daniels +5 位作者 Pearl Webb Andrew N. Sharpley Timothy Glover Lawrence Berry Karl W. Van Devender Stan Rose 《Journal of Environmental Protection》 2023年第9期742-760,共19页
Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haa... Manure management is an essential component of dairy production. Nutrient-laden, field-applied dairy manure often serves as a fertilizer source, but can also pose environmental threats if not properly managed. The Haak dairy farm, located in Decatur, Arkansas, was granted a permit by the Arkansas Department of Environmental Quality (ADEQ) to employ a unique method in treating and storing cattle manure generated during the milking process. This method includes minimizing water use in wash water, dry scraping solids to combine with sawdust for composting and pumping effluent underground into a sloped concrete basin that serves as secondary solid separator before transporting the manure effluent into an interception trench and an adjacent grassed field to facilitate manure nutrient uptake and retention. The Arkansas Discovery Farm program (ADF) is conducting research to evaluate the environmental performance of the dairy’s milk center wash water treatment system (MCWW) by statistical analysis, characterization of phosphorus (P) migration in soil downslope from the inception trench, temperature measurements, and nutrient analysis of a stored dry stack manure/sawdust mixture. Goals included determining possible composting effectiveness along with comparisons to untreated dairy manure and quantifying the use of on-farm water. Results from this research demonstrated that: 1) The MCWW was effective at retaining manure-derived nutrients and reducing field nutrient migration as the MCWW interception trench had significantly higher total nitrogen (TN) (804.2 to 4.1), total phosphorus (TP) (135.6 to 1.5), and water extractable phosphorus (WEP) (55.0 to 1.0) concentrations in milligrams per liter (mg⋅L<sup>-1</sup>) than the downhill freshwater pond respectively;2) temperature readings of the manure dry stack indicated heightened levels of microbial and thermal activity, but did not reach a standard composting temperature of 54°C;3) manure dry stack nutrient content was typically higher than untreated dairy manure when measured on a “dry basis” in ppm, but was lower on an “as is basis” in ppm and kg/metric ton;and 4) water meter readings showed that the greatest use of on-farm water was for farm-wide cattle drinking (18.77), followed by water used in the milking center (3.45) and then followed by human usage (0.02) measured in cubic meters per day (m<sup>3</sup>⋅d<sup>-1</sup>). These results demonstrate that practical innovations in agricultural engineering and environmental science, such as the Haak dairy’s manure treatment system, can effectively reduce environmental hazards that accompany the management of manure at this dairy operation. 展开更多
关键词 Manure Management Soil Test Phosphorus Surface runoff Water Usage Manure Composting Environmental Hazards ARKANSAS Milk Center Wastewater Treatment system Statistical Analysis
下载PDF
Laboratory Study on Stormwater Runoff Treatment via Sand-Based Micron-scale Pore Pervious Paver
18
作者 Yuming Su Shengyi Qin +1 位作者 Chandra Dake Zhen Jin 《Journal of Civil Engineering and Architecture》 2023年第7期321-328,共8页
Stormwater runoff samples from a road in China were collected and analyzed for pH,TSS(total suspended solid),TDS(total dissolved solid),COD(chemical oxygen demand),TP(total phosphorus),TN(total nitrogen),Pb,Al,Zn,Fe,C... Stormwater runoff samples from a road in China were collected and analyzed for pH,TSS(total suspended solid),TDS(total dissolved solid),COD(chemical oxygen demand),TP(total phosphorus),TN(total nitrogen),Pb,Al,Zn,Fe,Cd,and Mn.Results showed that the pollutant concentrations from road runoff were relatively high.TSS and COD concentrations exceeded the Class B effluent requirement of the Chinese Standards of Pollutant Discharge from municipal WWTPs(wastewater treatment plants).COD,TP,and TN concentrations exceeded Class V of the Chinese Environmental Quality Standard for Surface Water.TSS,Zn,Fe,and Al concentrations exceeded the USEPA(U.S.Environmental Protection Agency)benchmark values.All these indicated proper runoff treatment to avoid negative impacts on the environment is needed.Metal partitioning analysis was conducted and it showed that Pb,Al,Zn,Fe,and Mn exist mostly in particulate forms in the runoff.Thus,gravitational settlement and filtration can still be cost-effective methods for removing most of these metals.Runoff samples were treated through two bench-scale laboratory set-ups,composed of micron-scale pore pervious paver systems and subsoil.The average removal rates of TSS,TP,and TN were 95.2%,81.8%,64.1%,and 64.4%,respectively.The removal rates of Pb,Al,Zn,Fe,and Cd also reached 50%-99.2%.The tested sand-based pervious paver has micron-scale pores with good filtration potential.The system can effectively reduce stormwater runoff pollution,thereby reducing the potential for groundwater pollution.In addition,residues and sediments collected from the surfaces of the pervious pavers were also tested.The metallic constituents in the residues and sediments were correlated to these in the runoff.Pb and Cr were low in the residues,but Zn exceeded the Class A limit of the Chinese Control Standard of Pollutants in Sludge for Agricultural Applications.Thus,proper disposal of the solid wastes generated from the pavers is also to be further investigated. 展开更多
关键词 Pervious paver stormwater runoff pollution runoff treatment sand-based pervious paver sponge city
下载PDF
Environmental Factors, Constraints and Risks of Rainwater Runoff in Commune II of Maradi (Republic of Niger)
19
作者 Maman Sani Abdou Babaye Karimou Dia Hantchi +4 位作者 Abdoulkader Moussa Issaka Ousmane Laminou Manzo Yahaya Saadou Labo Choukouriya Laouali Sannoussi Moussa Konaté 《Open Journal of Modern Hydrology》 2023年第4期211-228,共18页
The Urban Commune of Maradi in Niger experienced increasingly frequent flooding following rainy episodes generating volumes and water flows that are difficult to control in recent years. This study aims to determine t... The Urban Commune of Maradi in Niger experienced increasingly frequent flooding following rainy episodes generating volumes and water flows that are difficult to control in recent years. This study aims to determine the impacts of runoff water in Commune II of Maradi City and to assess the role of urban planning in runoff management, as well as the strengths and weaknesses of urban sanitation in Maradi. The methodological approach used consisted of: 1) an interpretation of documentary data, 2) gathering information on runoff at several sites in the study area, and 3) interviews and questionnaires with local communities. This approach made it possible to understand the degree of vulnerability of the populations to flooding and then to propose sustainable solutions to reduce the vulnerability of the affected populations, through the implementation of effective urban rainwater management practices (USWMP). The results show that the impacts of runoff are mainly related to the lack of adequate storm water drainage networks in the area, but also to the nature of the habitats. Geomorphological factors such as the nature of the soil, the slope of the terrain and the altitude increase the degree of risk. In addition, the inadequacy and dilapidation of the drainage systems of the canals and above all the anarchic occupation of the land linked to accelerated urbanization are the cause of flooding by stagnation of rainwater. A phenomenon now linked to numerous deteriorations of urban equipment, the runoff of rainwater in the city of Maradi carries so many pollutants that municipalities, businesses and individuals should put in place pollution prevention measures. 展开更多
关键词 NIGER Storm Water Impermeable Spaces Urban runoff Flood VULNERABILITY
下载PDF
基于地球河流扇预测模型的火星地表水径流量预测
20
作者 张元福 张森 +5 位作者 黄云英 孙世坦 袁晓冬 王敏 张晓晗 陈冬 《沉积学报》 CAS CSCD 北大核心 2024年第1期52-63,共12页
【目的】火星表面的水活动地质历史一直是科学界关心的热点,直接影响着火星探测的研究方向。【方法】根据火星和地球的可对比性,建立了融合345个地球现代河流扇沉积的数据集并形成了高精度扇体面积预测模型,从而识别火星上的河流扇沉积... 【目的】火星表面的水活动地质历史一直是科学界关心的热点,直接影响着火星探测的研究方向。【方法】根据火星和地球的可对比性,建立了融合345个地球现代河流扇沉积的数据集并形成了高精度扇体面积预测模型,从而识别火星上的河流扇沉积,预测火星河流扇发育期的地表水径流量。【结果】结果表示,在火星南部高地霍尔顿陨石坑附近识别出一个面积约84.35 km^(2)的典型河流扇沉积,并反向预测出该扇体形成需要的年平均地表水径流量为1.8828×10^(6)m^(3),推测出该区域径流量不是由单一降水构成,为雪山(冰川)融水和降水多种来源。【结论】该成果是河流扇研究在行星沉积学中的应用,为进一步深入研究火星和其他天体地表水活动提供了新的方法。 展开更多
关键词 火星 水活动 河流扇 沉积体系 年径流量
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部