The models, methods and their application experiences of a practical GIS(geographic information system)-based computer decision-making support system of urban power distribution network planning with seven subsystems,...The models, methods and their application experiences of a practical GIS(geographic information system)-based computer decision-making support system of urban power distribution network planning with seven subsystems,termed CNP,are described.In each subsystem there is at least one or one set of practical mathematical methobs.Some new models and mathematical methods have been introduced.In the development of CNP the idea of cognitive system engineering has been insisted on,which claims that human and computer intelligence should be combined together to solve the complex engineering problems cooperatively.Practical applications have shown that not only the optimal plan can be automatically reached with many complicated factors considered, but also the computation,analysis and graphic drawing burden can be released considerably.展开更多
A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the s...A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.展开更多
In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of ...In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.展开更多
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r...Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.展开更多
This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, ...This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.展开更多
The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.T...The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.展开更多
With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in po...With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved.展开更多
A substation planning method that accounts for the widespread introduction of distributed generators(DGs)in a low-carbon economy is proposed.With the proliferation of DGs,the capacity that DGs contribute to the distri...A substation planning method that accounts for the widespread introduction of distributed generators(DGs)in a low-carbon economy is proposed.With the proliferation of DGs,the capacity that DGs contribute to the distribution network has become increasingly important.The capacity of a DG is expressed as a capacity credit(CC)that can be evaluated according to the principle that the reliability index is unchanged before and after the introduction of the DG.A method that employs a weighted Voronoi diagram is proposed for substation planning considering CC.A low-carbon evaluation objective function is added to the substation planning model to evaluate the contribution of DGs to a low-carbon economy.A case study is analyzed to demonstrate the practicality of the proposed method.展开更多
The health status of distribution equipment and networks is not considered directly in existing distribution network planning methods.In order to effectively consider the health status and deal with the risk associate...The health status of distribution equipment and networks is not considered directly in existing distribution network planning methods.In order to effectively consider the health status and deal with the risk associated with load and renewable generation uncertainties,this paper presents a new optimal expansion planning approach for distribution network(EPADN)incorporating equipment’s health index(HI)and non-network solutions(NNSs).HI and relevant risk are used to help develop the optimal equipment replacement strategy and temporary NNSs are considered as promising options for handling the uncertainties of load growth,reliability requirements of power supply and output of distributed energy resources(DERs)at a lower cost than network alternatives.An EPADN model using network solutions(NSs)and NNSs is proposed.The planning objectives of the proposed model are safety,reliability,economy,and‘greenness’that are also the meaning of distribution network HI.A method integrating an improved niche genetic algorithm(INGA)and a spanning tree algorithm(STA)is fitted to solve the model presented here for real sized networks with a manageable computational cost.Simulation results of an actual 22-node distribution network in China,illustrate the effectiveness of the proposed approach.展开更多
We address the problem of optimally re-routing the feeders of urban distribution network in Milano,Italy,which presents some peculiarities and significant design challenges.Milano has two separate medium-voltage(MV)di...We address the problem of optimally re-routing the feeders of urban distribution network in Milano,Italy,which presents some peculiarities and significant design challenges.Milano has two separate medium-voltage(MV)distribution networks,previously operated by two different utilities,which grew up independently and incoordinately.This results in a system layout which is inefficient,redundant,and difficult to manage due to different operating procedures.The current utility UNARETI,which is in charge of the overall distribution system,aims at optimally integrating the two MV distribution networks and moving to a new specific layout that offers advantages from the perspectives of reliability and flexibility.We present a mixed-integer programming(MIP)approach for the design of a new network configuration satisfying the so-called 2-step ladder layout required by the planner.The model accounts for the main electrical constraints such as power flow equations,thermal limits of high-voltage(HV)/MV substation transformers,line thermal limits,and the maximum number of customers per feeder.Real power losses are taken into account via a quadratic formulation and a piecewise linear approximation.Computational tests on a small-scale system and on a part of the Milano distribution network are reported.展开更多
This paper addresses an optimal design of low-voltage(LV)distribution network for rural electrification considering photovoltaic(PV)and battery energy storage(BES).It aims at searching for an optimal topology of an LV...This paper addresses an optimal design of low-voltage(LV)distribution network for rural electrification considering photovoltaic(PV)and battery energy storage(BES).It aims at searching for an optimal topology of an LV distribution system as well as the siting and sizing of PV and storage over a time horizon of 30 years.Firstly,the shortest-path algorithm(SPA)and first-fit bin-packing algorithm(FFBPA)are used to search for the optimal radial topology that minimizes the total length of the distribution line and improves the load balancing.Then,the optimal siting of decentralized BES(DeBES)is determined using a genetic algorithm(GA)to eliminate the undervoltage constraints due to the load consumption.Two iterative techniques are elaborated to size the maximum peak power of PV and the minimum number of DeBES that can be connected to an LV network without violating the voltage and current constraints.Then,the sizing strategy of centralized BES(CeBES)is developed to avoid reverse power flows into the medium-voltage(MV)network.Finally,a Monte Carlo approach is used to study the impact of load profile uncertainties on the topology.A non-electrified village in Cambodia has been chosen as a case study.展开更多
文摘The models, methods and their application experiences of a practical GIS(geographic information system)-based computer decision-making support system of urban power distribution network planning with seven subsystems,termed CNP,are described.In each subsystem there is at least one or one set of practical mathematical methobs.Some new models and mathematical methods have been introduced.In the development of CNP the idea of cognitive system engineering has been insisted on,which claims that human and computer intelligence should be combined together to solve the complex engineering problems cooperatively.Practical applications have shown that not only the optimal plan can be automatically reached with many complicated factors considered, but also the computation,analysis and graphic drawing burden can be released considerably.
文摘A distribution network plays an extremely important role in the safe and efficient operation of a power grid.As the core part of a power grid’s operation,a distribution network will have a significant impact on the safety and reliability of residential electricity consumption.it is necessary to actively plan and modify the distribution network’s structure in the power grid,improve the quality of the distribution network,and optimize the planning of the distribution network,so that the network can be fully utilized to meet the needs of electricity consumption.In this paper,a distribution network grid planning algorithm based on the reliability of electricity consumption was completed using ant colony algorithm.For the distribution network structure planning of dual power sources,the parallel ant colony algorithm was used to prove that the premise of parallelism is the interactive process of ant colonies,and the dual power distribution network structure model is established based on the principle of the lowest cost.The artificial ants in the algorithm were compared with real ants in nature,and the basic steps and working principle of the ant colony optimization algorithm was studied with the help of the travelling salesman problem(TSP).Then,the limitations of the ant colony algorithm were analyzed,and an improvement strategy was proposed by using python for digital simulation.The results demonstrated the reliability of model-building and algorithm improvement.
文摘In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.
文摘Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality.
文摘This paper proposes to use the power system simulation software CYME to plan, model and simulate for an actual distribution network for improving the reliability and efficiency, enhancing the efficiency and capacity, simulating the abnormal condition of distribution network, and presenting operation program of safe, reliable and having simulation record statements. The modeling simulation results show that the software module has lots of advantages including high accuracy, ideal reliability, powerful practicality in simulation and analysis of distribution network, it only need to create once model, the model can sufficiently satisfy multifarious types of simulation analysis required for the distribution network planning.
文摘The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.
文摘With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved.
基金This work was supported by the National Natural Science Foundation of China(No.51477116).
文摘A substation planning method that accounts for the widespread introduction of distributed generators(DGs)in a low-carbon economy is proposed.With the proliferation of DGs,the capacity that DGs contribute to the distribution network has become increasingly important.The capacity of a DG is expressed as a capacity credit(CC)that can be evaluated according to the principle that the reliability index is unchanged before and after the introduction of the DG.A method that employs a weighted Voronoi diagram is proposed for substation planning considering CC.A low-carbon evaluation objective function is added to the substation planning model to evaluate the contribution of DGs to a low-carbon economy.A case study is analyzed to demonstrate the practicality of the proposed method.
基金This work was supported in part by the Science and Technology Project of SGCC under Grant No.PD71-18-023.
文摘The health status of distribution equipment and networks is not considered directly in existing distribution network planning methods.In order to effectively consider the health status and deal with the risk associated with load and renewable generation uncertainties,this paper presents a new optimal expansion planning approach for distribution network(EPADN)incorporating equipment’s health index(HI)and non-network solutions(NNSs).HI and relevant risk are used to help develop the optimal equipment replacement strategy and temporary NNSs are considered as promising options for handling the uncertainties of load growth,reliability requirements of power supply and output of distributed energy resources(DERs)at a lower cost than network alternatives.An EPADN model using network solutions(NSs)and NNSs is proposed.The planning objectives of the proposed model are safety,reliability,economy,and‘greenness’that are also the meaning of distribution network HI.A method integrating an improved niche genetic algorithm(INGA)and a spanning tree algorithm(STA)is fitted to solve the model presented here for real sized networks with a manageable computational cost.Simulation results of an actual 22-node distribution network in China,illustrate the effectiveness of the proposed approach.
文摘We address the problem of optimally re-routing the feeders of urban distribution network in Milano,Italy,which presents some peculiarities and significant design challenges.Milano has two separate medium-voltage(MV)distribution networks,previously operated by two different utilities,which grew up independently and incoordinately.This results in a system layout which is inefficient,redundant,and difficult to manage due to different operating procedures.The current utility UNARETI,which is in charge of the overall distribution system,aims at optimally integrating the two MV distribution networks and moving to a new specific layout that offers advantages from the perspectives of reliability and flexibility.We present a mixed-integer programming(MIP)approach for the design of a new network configuration satisfying the so-called 2-step ladder layout required by the planner.The model accounts for the main electrical constraints such as power flow equations,thermal limits of high-voltage(HV)/MV substation transformers,line thermal limits,and the maximum number of customers per feeder.Real power losses are taken into account via a quadratic formulation and a piecewise linear approximation.Computational tests on a small-scale system and on a part of the Milano distribution network are reported.
基金supported in part by the French Government Scholarship(BGF)the Grenoble Electrical Engineering Laboratory(G2Elab)。
文摘This paper addresses an optimal design of low-voltage(LV)distribution network for rural electrification considering photovoltaic(PV)and battery energy storage(BES).It aims at searching for an optimal topology of an LV distribution system as well as the siting and sizing of PV and storage over a time horizon of 30 years.Firstly,the shortest-path algorithm(SPA)and first-fit bin-packing algorithm(FFBPA)are used to search for the optimal radial topology that minimizes the total length of the distribution line and improves the load balancing.Then,the optimal siting of decentralized BES(DeBES)is determined using a genetic algorithm(GA)to eliminate the undervoltage constraints due to the load consumption.Two iterative techniques are elaborated to size the maximum peak power of PV and the minimum number of DeBES that can be connected to an LV network without violating the voltage and current constraints.Then,the sizing strategy of centralized BES(CeBES)is developed to avoid reverse power flows into the medium-voltage(MV)network.Finally,a Monte Carlo approach is used to study the impact of load profile uncertainties on the topology.A non-electrified village in Cambodia has been chosen as a case study.