In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve...In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.展开更多
Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern....Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.Herein,the tribocorrosion behavior,as well as the corrosion behavior,of 304L stainless steel(SS)in high-temperatureconcentrated nitric acid was investigated.The results indicated that 304L SS formed a thin(1.54 nm)and stable passivefilm on the surface,imparting high resistance to nitric acid corrosion.Meanwhile,it was found that the synergistic effectbetween corrosion and wear accounted for a high total tribocorrosion weight loss of over 85%,implying the dominantrole of the synergistic effect in the tribocorrosion process.Furthermore,the wear of 304L SS in deionized water revealedboth abrasive and adhesive wear characterizations,whereas the tribocorrosion in nitric acid only exhibited abrasive wearfeature.Eventually,the tribocorrosion and corrosion models of 304L SS in hot concentrated nitric acid were proposedbased on the comprehensive experimental findings.展开更多
Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the reba...Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of different dimensions were produced. Forty coupons were used for gravimetric analysis and the remaining five for corrosion potentials measurements. Eight of the samples were used as control;while other eight samples each were admixed with calcium nitrate and sodium nitrite in concrete cubes. It was later immersed in seawater and cassava fluid for a total duration of 32 days and the measurements were taken at the interval of 4 days in order to determine the corrosion rates in mils per year (mmpy). Two controls and admixed samples each were later immersed in seawater and cassava fluid, respectively, for durations of 32 days to determine the corrosion potentials using a voltmeter and a Copper-Copper Sulphate Electrode (Cu/CuSO4). The pH of each medium was measured throughout the period of exposure. The results obtained expressed that all the samples except the control samples, displayed some degree of inhibition. The inhibition levels for the admixed samples in seawater were higher compared with those in cassava fluid. Inhibition efficiencies for various inhibitors followed different trends in different environment. The inhibition efficiencies for calcium nitrate in cassava fluid and seawater were 26.81% and 64.85% respectively. The study concluded that inorganic inhibitors were effective in inhibiting corrosion in cyanide and chloride contaminated concrete cubes.展开更多
Chemical mitigation is regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study presents the effect of toluene and dioctylphthalate on the rebar corrosion o...Chemical mitigation is regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study presents the effect of toluene and dioctylphthalate on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of different dimensions were produced. Forty coupons were used for gravimetry and the remaining five for corrosion potentials measurements. Eight of the samples were used as control;while other eight samples were admixed with dioctylphthalate and toluene in concrete cubes. It was later immersed in seawater and cassava fluid for a total duration of 32 days and the measurements were taken at interval of 4 days in order to determine the corrosion rates in mils per year (mmpy). Two controls and admixed samples were later immersed in seawater and cassava fluid, respectively, for durations of thirty-two days to determine the corrosion potentials using a voltmeter and a Copper-Copper Sulphate Electrode (Cu/CuSO4). The pH of each medium was also measured throughout the period of exposure. The results obtained showed that all the samples except the control samples, displayed some degree of inhibition. The inhibition levels for the admixed samples in seawater were on the higher side compared with those in cassava fluid. The inhibition efficiencies for different inhibitors followed different trends in different environment. The inhibition efficiencies for toluene in cassava fluid and seawater were 21.64% and 45.78% respectively. The study concluded that organic inhibitors were effective in inhibiting corrosion in cyanide and chloride contaminated concrete cubes.展开更多
Soil moisture collected from three locations, namely University of Calabar (UNICAL), Calabar municipal solid waste dumpsite (MSWD) and a mechanic workshop (MW) all within Calabar metropolis, Nigeria, were analyzed qua...Soil moisture collected from three locations, namely University of Calabar (UNICAL), Calabar municipal solid waste dumpsite (MSWD) and a mechanic workshop (MW) all within Calabar metropolis, Nigeria, were analyzed quarterly in a one year study at different depths (0.5 m and 1 m) for some physicochemical parameters. UV-visible spectrophotometer, titration and atomic absorption spectrophotometer (AAS) were the employed analytical techniques. With the exception of chloride, all other parameters showed higher values with depth. Higher values for the analyzed parameters were generally reported for MSWD and this was largely the result of the presence of a variety of contaminants in this location. Microbial analysis of soil samples from the locations revealed the presence of SRB in MW, which could have possibly influenced the soil moisture chemistry of the location. Corrosion rate was calculated from weight loss measurements and the quarterly results were all for follow the trend: UNICAL < MW < MSWD. At the end of the 4th quarter, the corrosion rates at 0.5 m depth were 0.0057, 0.0070, and 0.0101 mm/hour for UNICAL, MW, and MSWD, respectively, while their corresponding values at 1 m depth were 0.0087, 0.0114, and 0.0128 μm/hour. The values were shown to increase with depth. R-mode factor analysis identified some important factors which could have been responsible for the variation in the chemistry of the soil moisture.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ...This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.展开更多
Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou...The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.展开更多
The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Uti...The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Utilizing weight-loss analysis,electrochemical measurements,Raman spectroscopy,and 3D morphology microscopy,the research unveiled significant findings.Unprotected steel suffered pronounced localized corrosion in the presence of D.desulfuricans in the marine tidal environment.However,the implementation of Zn-SA cathode protection notably reduced the activity of both planktonic and sessile D.desulfuricans cells.Over time,the accumulation of calcareous deposits within the corrosion products increased,as evidenced by a rise in the resistance of the corrosion produt film(Rf).Remarkably,Zn-SA cathode protection demonstrated substantial inhibition of the steel’s corrosion rate,albeit exhibiting reduced efficiency as the vertical height of the steel within the tidal environment increased.展开更多
The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion res...The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.展开更多
Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard elec...Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard electrode potentials,which may lead to differences in corrosion,but their effects on corrosion by the same bacteria have not been reported.The corrosion of Q235 steel affected by Pseudodesulfovibrio cashew(P.cashew)in the sulfate and nitrate media under carbon starvation was studied.It was found that sulfate and nitrate did not lead to differences in corrosion under abiotic conditions.However,P.cashew promoted corrosion in both cases,and the consumption of H_(2)was the main mechanism for MIC.In addition,corrosion was more severe in the sulfate media.The higher corrosivity of P.cashew with sulfate as the electron acceptor is closely related to the higher number of sessile cells in the biofilm,higher bacterial motility,more hydrogen production pathways,and the increased gene expression of enzymes related to energy synthesis.展开更多
Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of col...Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.展开更多
It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was condu...It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was conducted to identify the zinc coating techniques, and the companies that can provide different coating service was identified. A salt fog chamber was built that was in compliance with the ANSI B117 code, and the steel plates that were coated by the identified companies were tested using the salt fog chamber. The results indicated that the coating technique that had the best performance in preventing corrosion was the Greenkote plates with passivation. The galvanized option had the roughest coating layer, and it was the most reactive in the salt water solution. This makes it non-ideal for the dynamic rail environment because the increased friction of the plate could damage the supports, especially during extreme temperatures that would cause the rail to expand or contract. Greenkote with Phosphate and ArmorGalv also provided increased corrosion prevention with a smooth, strong finish, but it had more rust on the surface area than the Greenkote with ELU passivation. The ArmorGalv sample had more rust on the surface area than the Greenkote samples. This may not be a weakness in the ArmorGalv process;rather, it likely was the result of this particular sample not having the added protection of a colored coating.展开更多
A significant portion of the sum spent by asset managers in maintaining steel bridge assets is dedicated to corrosion management of aging steel bridges,particularly very old ones.Managing corrosion of such bridges pos...A significant portion of the sum spent by asset managers in maintaining steel bridge assets is dedicated to corrosion management of aging steel bridges,particularly very old ones.Managing corrosion of such bridges poses unique challenges owing to the inherent complexities associated with design,material,fabrication and construction.Steel bridges have come a long way from being constructed of cast iron and wrought iron in the early days to modern day low carbon high strength steel bridges.During inception of steel bridges in Australia,wrought iron was used extensively in deck structure whereas piers were generally constructed of cast iron.Some of these piers have been found to be suffering from graphitisation.Even though CP(cathodic protection)has been proven to enhance the life of steel and reinforced concrete structures by preventing any further corrosion,there is little evidence to validate its success in preventing graphitisation of cast iron piers.Early steel bridges in NSW(New South Wales)were constructed with a complex geometry involving riveted cellular box girders,later simplified to riveted trusses.For any rehabilitation work to begin,the challenges start at the investigation stage.Due to cellular box type construction,thorough inspection and examination of inside of the boxes is generally not feasible even with the use of the available state-of-the-art investigation techniques.Some of the steel bridges in service in NSW are more than 120 years old.Any rehabilitation effort for such bridges faces challenges in terms of design methods to be used,availability of compatible material,selection of an appropriate method of joining e.g.welding or bolting,selection of a compatible protective coating,accessibility for the work to be carried out,etc.This paper describes common forms of corrosion observed on bridges.It demonstrates the difficulties in maintaining old bridges using two case studies.展开更多
The corrosion resistance of weathering bridge steels containing conventional contents of Ni(0.20 wt%, 0.42 wt%, 1.50 wt%) and a higher content of Ni(3.55 wt%) in a simulated hot and humid coastal-industrial atmosphere...The corrosion resistance of weathering bridge steels containing conventional contents of Ni(0.20 wt%, 0.42 wt%, 1.50 wt%) and a higher content of Ni(3.55 wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy–energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low(≤0.42 wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher(~3.55 wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe_2O_4 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42 wt% to 1.50 wt%, the corrosion resistance of the bridge steel increased only slightly.展开更多
The effect of H2S concentration on H2S/CO2 corrosion of API-X60 steel was studied by scanning electron microscopy, a weight-loss method, potentiodynamic polarization tests, and the electrochemical impedance spectrosco...The effect of H2S concentration on H2S/CO2 corrosion of API-X60 steel was studied by scanning electron microscopy, a weight-loss method, potentiodynamic polarization tests, and the electrochemical impedance spectroscopy technique. It is found that the cor-rosion process of the steel in an environment where H2S and CO2 coexist at different H2S concentrations is related to the morphological structure and stability of the corrosion product film. With the addition of a small amount of H2S, the size of the anode reaction region is de-creased due to constant adsorption and separation of more FeS sediment or more FeHS+ions on the surface of the steel. Meanwhile, the dou-ble-layer capacitance is diminished with increasing anion adsorption capacity. Therefore, the corrosion process is inhibited. The general cor-rosion rate of the steel rapidly decreases after the addition of a small amount of H2S under the coexistence of H2S and CO2. With a further increase in H2S concentration, certain parts of the corrosion product film become loose and even fall off. Thus, the protection provided by the corrosion product film worsens, and the corrosion rate tends to increase.展开更多
Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemic...Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.展开更多
A newly developed low-alloy weathering steel has been exposed in two coastal sites (Qingdao in the north, Wanning in the south) in China for one year. The samples in Wanning corroded far more seriously than those in...A newly developed low-alloy weathering steel has been exposed in two coastal sites (Qingdao in the north, Wanning in the south) in China for one year. The samples in Wanning corroded far more seriously than those in Qingdao. The rust layer formed on the steel was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption approach, polarization curves, and electrochemical impedance spectroscopy (EIS). The rust formed in Qingdao contains more X-ray amorphous compounds and is more compact than that formed in Wanning. Cr and Cu are enriched in the rust layer near the steel matrix, and the phenomenon is more obvious in Qingdao than in Wanning. The rust layer formed in Qingdao suppresses the anodic and cathodic reaction more remarkably than that formed in Wanning does. The rust layer formed in Qingdao possesses a higher ability to block the permeation of chloride ions than that formed in Wanning does.展开更多
Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influenc...Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.展开更多
基金The Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (NoIRT0518)
文摘In order to study the effectiveness of combined carbon fiber-reinforced polymer (CFRP) sheets and steel jacket in strengthening the seismic performance of corrosion-damaged reinforced concrete (RC) columns, twelve reinforced concrete columns are tested under combined lateral cyclic displacement excursions and constant axial load. The variables studied in this program include effects of corrosion degree of the rebars, level of axial load, the amount of CFRP sheets and steel jacket. The results indicate that the combined CFRP and steel jacket retrofitting technique is effective in improving load-carrying, ductility and energy absorption capacity of the columns. Compared with the corrosion-damaged RC column, the lateral load and the ductility factor of many strengthened columns increase more than 90% and 100%, respectively. The formulae for the calculation of the yielding load, the maximum lateral load and the displacement ductility factor of the strengthened columns under combined constant axial load and cyclically increasing lateral loading are developed. The test results are also compared with the results obtained from the proposed formulae. A good agreement between calculated values and experimental results is observed.
基金Projects(52101105,52373321)supported by the National Natural Science Foundation of ChinaProject(2023-PY03)supported by the IMR Innovation Fund,ChinaProject(CNNC-LCKY-202274)supported by the LingChuang Research Project of China National Nuclear Corporation。
文摘Spent fuel reprocessing plays a pivotal role in achieving efficient recycling of nuclear fuel.Among thedifferent forms of failure encountered in spent fuel reprocessing,tribocorrosion stands out as a critical concern.Herein,the tribocorrosion behavior,as well as the corrosion behavior,of 304L stainless steel(SS)in high-temperatureconcentrated nitric acid was investigated.The results indicated that 304L SS formed a thin(1.54 nm)and stable passivefilm on the surface,imparting high resistance to nitric acid corrosion.Meanwhile,it was found that the synergistic effectbetween corrosion and wear accounted for a high total tribocorrosion weight loss of over 85%,implying the dominantrole of the synergistic effect in the tribocorrosion process.Furthermore,the wear of 304L SS in deionized water revealedboth abrasive and adhesive wear characterizations,whereas the tribocorrosion in nitric acid only exhibited abrasive wearfeature.Eventually,the tribocorrosion and corrosion models of 304L SS in hot concentrated nitric acid were proposedbased on the comprehensive experimental findings.
文摘Inhibitors are regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study investigates the effect of calcium nitrate and sodium nitrite inhibitors on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of different dimensions were produced. Forty coupons were used for gravimetric analysis and the remaining five for corrosion potentials measurements. Eight of the samples were used as control;while other eight samples each were admixed with calcium nitrate and sodium nitrite in concrete cubes. It was later immersed in seawater and cassava fluid for a total duration of 32 days and the measurements were taken at the interval of 4 days in order to determine the corrosion rates in mils per year (mmpy). Two controls and admixed samples each were later immersed in seawater and cassava fluid, respectively, for durations of 32 days to determine the corrosion potentials using a voltmeter and a Copper-Copper Sulphate Electrode (Cu/CuSO4). The pH of each medium was measured throughout the period of exposure. The results obtained expressed that all the samples except the control samples, displayed some degree of inhibition. The inhibition levels for the admixed samples in seawater were higher compared with those in cassava fluid. Inhibition efficiencies for various inhibitors followed different trends in different environment. The inhibition efficiencies for calcium nitrate in cassava fluid and seawater were 26.81% and 64.85% respectively. The study concluded that inorganic inhibitors were effective in inhibiting corrosion in cyanide and chloride contaminated concrete cubes.
文摘Chemical mitigation is regularly used as one of the principal prevention and control techniques in reinforcement corrosion. Hence this study presents the effect of toluene and dioctylphthalate on the rebar corrosion of medium carbon steel in seawater and cassava fluid with a view to determining inhibitive potentials of the different inhibitors in the two media. Gravimetric and voltametric techniques were employed in this study and a total of forty-five corrosion coupons of different dimensions were produced. Forty coupons were used for gravimetry and the remaining five for corrosion potentials measurements. Eight of the samples were used as control;while other eight samples were admixed with dioctylphthalate and toluene in concrete cubes. It was later immersed in seawater and cassava fluid for a total duration of 32 days and the measurements were taken at interval of 4 days in order to determine the corrosion rates in mils per year (mmpy). Two controls and admixed samples were later immersed in seawater and cassava fluid, respectively, for durations of thirty-two days to determine the corrosion potentials using a voltmeter and a Copper-Copper Sulphate Electrode (Cu/CuSO4). The pH of each medium was also measured throughout the period of exposure. The results obtained showed that all the samples except the control samples, displayed some degree of inhibition. The inhibition levels for the admixed samples in seawater were on the higher side compared with those in cassava fluid. The inhibition efficiencies for different inhibitors followed different trends in different environment. The inhibition efficiencies for toluene in cassava fluid and seawater were 21.64% and 45.78% respectively. The study concluded that organic inhibitors were effective in inhibiting corrosion in cyanide and chloride contaminated concrete cubes.
文摘Soil moisture collected from three locations, namely University of Calabar (UNICAL), Calabar municipal solid waste dumpsite (MSWD) and a mechanic workshop (MW) all within Calabar metropolis, Nigeria, were analyzed quarterly in a one year study at different depths (0.5 m and 1 m) for some physicochemical parameters. UV-visible spectrophotometer, titration and atomic absorption spectrophotometer (AAS) were the employed analytical techniques. With the exception of chloride, all other parameters showed higher values with depth. Higher values for the analyzed parameters were generally reported for MSWD and this was largely the result of the presence of a variety of contaminants in this location. Microbial analysis of soil samples from the locations revealed the presence of SRB in MW, which could have possibly influenced the soil moisture chemistry of the location. Corrosion rate was calculated from weight loss measurements and the quarterly results were all for follow the trend: UNICAL < MW < MSWD. At the end of the 4th quarter, the corrosion rates at 0.5 m depth were 0.0057, 0.0070, and 0.0101 mm/hour for UNICAL, MW, and MSWD, respectively, while their corresponding values at 1 m depth were 0.0087, 0.0114, and 0.0128 μm/hour. The values were shown to increase with depth. R-mode factor analysis identified some important factors which could have been responsible for the variation in the chemistry of the soil moisture.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金the National Key R&D Program of China(No.2021YFB3701705).
文摘This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
基金supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063)。
文摘The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
基金Projects(52471096,51971191)supported by the National Natural Science Foundation of ChinaProject(S202410530205)supported by the College Students Innovation and Entrepreneurship Training Program of Hunan Province,ChinaProject(S202310530029)supported by the National College Students Innovation and Entrepreneurship Training Program,China。
文摘The study systematically investigated the impact of zinc sacrificial anode(Zn-SA)cathode protection on the corrosion of X80 steel caused by Desulfovibrio desulfuricans(D.desulfuricans)in a marine tidal environment.Utilizing weight-loss analysis,electrochemical measurements,Raman spectroscopy,and 3D morphology microscopy,the research unveiled significant findings.Unprotected steel suffered pronounced localized corrosion in the presence of D.desulfuricans in the marine tidal environment.However,the implementation of Zn-SA cathode protection notably reduced the activity of both planktonic and sessile D.desulfuricans cells.Over time,the accumulation of calcareous deposits within the corrosion products increased,as evidenced by a rise in the resistance of the corrosion produt film(Rf).Remarkably,Zn-SA cathode protection demonstrated substantial inhibition of the steel’s corrosion rate,albeit exhibiting reduced efficiency as the vertical height of the steel within the tidal environment increased.
基金financially supported by the National Natural Science Foundation of China(22178242)the Shanxi Provincial Key Research and Development Project(202102040201009).
文摘The use of fillers to enhance the corrosion protection of epoxy resins has been widely applied.In this work,cerium dioxide(CeO_(2))and benzotriazole(BTA)were introduced into an epoxy resin to enhance the corrosion resistance of Q235 carbon steel.Scanning electron microscopy results indicated that the CeO_(2) grains were rod-like and ellipsoidal in shape,and the distribution pattern of BTA was analyzed by energy dispersive spectroscope.The dynamic potential polarization curve proved the excellent corrosion resistance of the composite epoxy resin with CeO_(2) and BTA co-addition,and electrochemical impedance spectroscopy test analysis indicated the significantly enhanced long-term corrosion protection performance of the composite coating.And the optimal protective performance was provided by the coating containing 0.3%(mass)CeO_(2) and 20%(mass)BTA,which was attributed to the barrier performance of CeO_(2) particles and the chemical barrier effect of BTA.The formation of corrosion products was analyzed using X-ray diffraction.In addition,the corrosion resistance mechanism of the coating was also discussed in detail.
基金Project(2022LSL050102)supported by the Laoshan Laboratory,China。
文摘Sulfate and nitrate reducing bacteria are important culprits for microbiologically influenced corrosion(MIC)using sulfate and nitrate as electron acceptors,respectively.Sulfate and nitrate hold different standard electrode potentials,which may lead to differences in corrosion,but their effects on corrosion by the same bacteria have not been reported.The corrosion of Q235 steel affected by Pseudodesulfovibrio cashew(P.cashew)in the sulfate and nitrate media under carbon starvation was studied.It was found that sulfate and nitrate did not lead to differences in corrosion under abiotic conditions.However,P.cashew promoted corrosion in both cases,and the consumption of H_(2)was the main mechanism for MIC.In addition,corrosion was more severe in the sulfate media.The higher corrosivity of P.cashew with sulfate as the electron acceptor is closely related to the higher number of sessile cells in the biofilm,higher bacterial motility,more hydrogen production pathways,and the increased gene expression of enzymes related to energy synthesis.
基金funded by the‘Research Project of the Sucheng to Sihong Section of the Yanluo Expressway-Measurement Technology and Application of Bridge Quality Project Based on UAV Binocular Imaging(No.00-00-JSFW-20230203-029)’,received by H.Z.Wang.
文摘Pitting corrosion is harmful during bridge construction,which will lead to uneven roughness of steel surfaces and reduce the thickness of steel.Hence,the effect of pitting corrosion on the mechanical properties of cold-formed thin-walled steel stub columns is studied,and the empirical formulas are established through regression fitting to predict the ultimate load of web and flange under pitting corrosion.In detail,the failure modes and load-displacement curves of specimens with different locations,area ratios,and depths are obtained through a large number of non-linear finite element analysis.As for the specimens with pitting corrosion on the web,all the specimens are subject to local buckling failure,and the failure mode will not change with pitting corrosion,but the failure location will change with pitting corrosion location;the size,location,and area ratio of pitting corrosion have little influence on the ultimate load of cold-formed thin-walled steel short columns,but the loss rate of pitting corrosion section area has a greater impact on the ultimate bearing capacity.As for the specimen with flange pitting corrosion,the location and area ratio of pitting corrosion have less influence on the ultimate load of cold-formed thin-walled steel short columns,and the section area loss rate has greater influence on the ultimate bearing capacity;the impact of web pitting corrosion on the ultimate load is greater than that of flange pitting corrosion under the same condition of pitting corrosion section area.The prediction formulas of limit load which are suitable for pitting corrosion of web and flange are established,which can provide a reference for performance evaluation of corroded cold-formed thin-walled steel.
文摘It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was conducted to identify the zinc coating techniques, and the companies that can provide different coating service was identified. A salt fog chamber was built that was in compliance with the ANSI B117 code, and the steel plates that were coated by the identified companies were tested using the salt fog chamber. The results indicated that the coating technique that had the best performance in preventing corrosion was the Greenkote plates with passivation. The galvanized option had the roughest coating layer, and it was the most reactive in the salt water solution. This makes it non-ideal for the dynamic rail environment because the increased friction of the plate could damage the supports, especially during extreme temperatures that would cause the rail to expand or contract. Greenkote with Phosphate and ArmorGalv also provided increased corrosion prevention with a smooth, strong finish, but it had more rust on the surface area than the Greenkote with ELU passivation. The ArmorGalv sample had more rust on the surface area than the Greenkote samples. This may not be a weakness in the ArmorGalv process;rather, it likely was the result of this particular sample not having the added protection of a colored coating.
基金The author expresses his thanks to the Chief Executive of Roads and Maritime Services,Transport for NSW,for permission to present this paper.The conclusions and views expressed in this paper do not necessarily reflect the views of RMS.
文摘A significant portion of the sum spent by asset managers in maintaining steel bridge assets is dedicated to corrosion management of aging steel bridges,particularly very old ones.Managing corrosion of such bridges poses unique challenges owing to the inherent complexities associated with design,material,fabrication and construction.Steel bridges have come a long way from being constructed of cast iron and wrought iron in the early days to modern day low carbon high strength steel bridges.During inception of steel bridges in Australia,wrought iron was used extensively in deck structure whereas piers were generally constructed of cast iron.Some of these piers have been found to be suffering from graphitisation.Even though CP(cathodic protection)has been proven to enhance the life of steel and reinforced concrete structures by preventing any further corrosion,there is little evidence to validate its success in preventing graphitisation of cast iron piers.Early steel bridges in NSW(New South Wales)were constructed with a complex geometry involving riveted cellular box girders,later simplified to riveted trusses.For any rehabilitation work to begin,the challenges start at the investigation stage.Due to cellular box type construction,thorough inspection and examination of inside of the boxes is generally not feasible even with the use of the available state-of-the-art investigation techniques.Some of the steel bridges in service in NSW are more than 120 years old.Any rehabilitation effort for such bridges faces challenges in terms of design methods to be used,availability of compatible material,selection of an appropriate method of joining e.g.welding or bolting,selection of a compatible protective coating,accessibility for the work to be carried out,etc.This paper describes common forms of corrosion observed on bridges.It demonstrates the difficulties in maintaining old bridges using two case studies.
基金financially supported by the National Natural Science Foundation of China (No. 51304040)the Fundamental Research Funds for the Central Universities (No. N150204008)
文摘The corrosion resistance of weathering bridge steels containing conventional contents of Ni(0.20 wt%, 0.42 wt%, 1.50 wt%) and a higher content of Ni(3.55 wt%) in a simulated hot and humid coastal-industrial atmosphere was investigated by corrosion depth loss, scanning electron microscopy–energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical methods. The results showed that, with increasing Ni content, the mechanical properties of the bridge steel were markedly improved, the welding parameters were satisfactory at room temperature, and the corrosion resistance was enhanced. When the Ni content was low(≤0.42 wt%), the crystallization process of the corrosion products was substantially promoted, enhancing the stability of the rust layer. When the Ni content was higher(~3.55 wt%), the corrosion reaction of the steel quickly reached a balance, because the initial rapid corrosion induced the formation of a protective rust layer in the early stage. Simultaneously, NiO and NiFe_2O_4 were generated in large quantities; they not only formed a stable, compact, and continuous oxide protective layer, but also strongly inhibited the transformation process of the corrosion products. This inhibition reduced the structural changes in the rust layer, thereby enhancing the protection. However, when the Ni content ranged from 0.42 wt% to 1.50 wt%, the corrosion resistance of the bridge steel increased only slightly.
基金financially supported by the National Natural Science Foundation of China(No.51171022)
文摘The effect of H2S concentration on H2S/CO2 corrosion of API-X60 steel was studied by scanning electron microscopy, a weight-loss method, potentiodynamic polarization tests, and the electrochemical impedance spectroscopy technique. It is found that the cor-rosion process of the steel in an environment where H2S and CO2 coexist at different H2S concentrations is related to the morphological structure and stability of the corrosion product film. With the addition of a small amount of H2S, the size of the anode reaction region is de-creased due to constant adsorption and separation of more FeS sediment or more FeHS+ions on the surface of the steel. Meanwhile, the dou-ble-layer capacitance is diminished with increasing anion adsorption capacity. Therefore, the corrosion process is inhibited. The general cor-rosion rate of the steel rapidly decreases after the addition of a small amount of H2S under the coexistence of H2S and CO2. With a further increase in H2S concentration, certain parts of the corrosion product film become loose and even fall off. Thus, the protection provided by the corrosion product film worsens, and the corrosion rate tends to increase.
基金supported by the National Natural Science Foundation of China and Baosteel Group Corporation (No.50534010)
文摘Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels (HNSS) were investigated by electrochemical and immersion testing methods in chloride solution, respectively. The chemical constitution and composition in the depth of passive films formed on HNSS were analyzed by X-ray photoelectron spectrum (XPS). HNSS has excellent pitting and crevice corrosion resistance compared to 316L stainless steel. With increasing the nitrogen content in steels, pitting potentials and critical pitting temperature (CPT) increase, and the maximum, average pit depths and average weight loss decrease. The CPT of HNSS is correlated with the alloying element content through the measure of alloying for resistance to corrosion (MARC). The MARC can be expressed as an equation of CPT=2.55MARC-29. XPS results show that HNSS exhibiting excellent corrosion resistance is attributed to the enrichment of nitrogen on the surface of passive films, which forms ammonium ions increasing the local pH value and facilitating repassivation, and the synergistic effects of molybdenum and nitrogen.
基金supported by the National Key Basic Research and Development Program of China (No.2004CB619102) and New Century Excellent Talents in China.
文摘A newly developed low-alloy weathering steel has been exposed in two coastal sites (Qingdao in the north, Wanning in the south) in China for one year. The samples in Wanning corroded far more seriously than those in Qingdao. The rust layer formed on the steel was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption approach, polarization curves, and electrochemical impedance spectroscopy (EIS). The rust formed in Qingdao contains more X-ray amorphous compounds and is more compact than that formed in Wanning. Cr and Cu are enriched in the rust layer near the steel matrix, and the phenomenon is more obvious in Qingdao than in Wanning. The rust layer formed in Qingdao suppresses the anodic and cathodic reaction more remarkably than that formed in Wanning does. The rust layer formed in Qingdao possesses a higher ability to block the permeation of chloride ions than that formed in Wanning does.
基金the support by the National Natural Science Foundation of China(Nos.51208098 and 51678144)the National Basic Research Program of China(No.2015CB655100)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20161420)Industry-University Research Cooperative Innovation Fund of Jiangsu Province(No.BY2013091)
文摘Electrochemical impedance spectroscopy, cyclic potentiodynamic polarization measurements, and scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy were used to investigate the influence of mill scale and rust layer on the passivation capability and chloride-induced corrosion behaviors of conventional low-carbon(LC) steel and low-alloy(LA) steel in simulated concrete pore solution. The results show that mill scale exerts different influences on the corrosion resistance of both steels at various electrochemical stages. We propose that the high long-term corrosion resistance of LA steel is mainly achieved through the synergistic effect of a gradually formed compact, adherent and well-distributed Cr-enriched inner rust layer and the physical barrier protection effect of mill scale.