Development of high performance electrocatalysts for oxygen evolution reaction (OER) in acidic media remains a challenge for direct water splitting using an electrolyzer.Recently,Ruddlesden-Popper phase Sr_(2)IrO_(4)w...Development of high performance electrocatalysts for oxygen evolution reaction (OER) in acidic media remains a challenge for direct water splitting using an electrolyzer.Recently,Ruddlesden-Popper phase Sr_(2)IrO_(4)was discovered to be an efficient OER catalyst because of its unique structure,which consists of layers of both rock salt and perovskite phases simultaneously.In this study,we prepared a series of B-site mixed,Ruddlesden-Popper phase of Sr_(2)(Ru_(x)Ir_(1-x))O_(4) and examined their electrocatalytic properties for OER in acidic media.Through partial substitution of Ru in the B-site of Ruddlesden-Popper phase materials,we achieved much enhanced OER performance for this series of Sr_(2)(Ru_(x)Ir_(1-x))O_(4)electrocatalysts,among which Sr_(2)(Ru_(0.5)Ir_(0.5))O_(4)exhibited the best catalytic activity with a current density of 8.06 m A/cm^(2) at 1.55 V and a Tafel slope of 47 m V/dec.This current density is three times higher than that of Sr_(2)Ir O_(4).The B-site mixed Sr_(2)(Ru_(0.5)Ir_(0.5))O_(4)retained good stability in acidic conditions for>24 h at 10 m A/cm^(2).A range of techniques were used to characterize the crystal and electronic structures of the Sr_(2)(Ru_(x)Ir_(1-x))O_(4)samples.Our data indicate that the improved OER performance can be correlated to the formation of high level of hydroxyl groups and the enhanced overlap between Ir/Ru 4d and O_(2)p orbitals,revealing a new way for the design of efficient OER electrocatalysts by regulating their composition and electronic structures.展开更多
基金supported in part by the US National Science Foundation(NSF-2055734)a start-up fund from University of Illinois at Urbana-Champaignthe support of a scholarship from the China Scholarship Council(CSC)。
文摘Development of high performance electrocatalysts for oxygen evolution reaction (OER) in acidic media remains a challenge for direct water splitting using an electrolyzer.Recently,Ruddlesden-Popper phase Sr_(2)IrO_(4)was discovered to be an efficient OER catalyst because of its unique structure,which consists of layers of both rock salt and perovskite phases simultaneously.In this study,we prepared a series of B-site mixed,Ruddlesden-Popper phase of Sr_(2)(Ru_(x)Ir_(1-x))O_(4) and examined their electrocatalytic properties for OER in acidic media.Through partial substitution of Ru in the B-site of Ruddlesden-Popper phase materials,we achieved much enhanced OER performance for this series of Sr_(2)(Ru_(x)Ir_(1-x))O_(4)electrocatalysts,among which Sr_(2)(Ru_(0.5)Ir_(0.5))O_(4)exhibited the best catalytic activity with a current density of 8.06 m A/cm^(2) at 1.55 V and a Tafel slope of 47 m V/dec.This current density is three times higher than that of Sr_(2)Ir O_(4).The B-site mixed Sr_(2)(Ru_(0.5)Ir_(0.5))O_(4)retained good stability in acidic conditions for>24 h at 10 m A/cm^(2).A range of techniques were used to characterize the crystal and electronic structures of the Sr_(2)(Ru_(x)Ir_(1-x))O_(4)samples.Our data indicate that the improved OER performance can be correlated to the formation of high level of hydroxyl groups and the enhanced overlap between Ir/Ru 4d and O_(2)p orbitals,revealing a new way for the design of efficient OER electrocatalysts by regulating their composition and electronic structures.