By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that o...By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that only the location of tension or compression stress fields of the dislocations are favorable for martensite nucleation in NiAl alloy and the dislocations can move to accommodate partly the transformation strain during the nucleation and growth of martensite. Combined with the molecular dynamics simulation, a two dimensional simulation for martensite morphology based on a dislocation model has been performed. Many factors related to martensitic transformation were considered, such as supercooling, interface energy, shear strain, normal strain and hydrostatic pressure. Different morphologies of martensites, similar to lath, lenticular, thin plate, couple-plate and lenticular couple-plate martensites observed in Fe-C and Fe-Ni-C alloys, were obtained.展开更多
The strain tensor and displacement vector associated with lattice deformation were introduced to discuss the effect of self-accommodation and plastic accommodation in martensitic transformation,and the models for {557...The strain tensor and displacement vector associated with lattice deformation were introduced to discuss the effect of self-accommodation and plastic accommodation in martensitic transformation,and the models for {557}_f and {3,10,15}_f martensite fomation were proposed, along with the experimental verification. It is considered that the invariant habit plane may result from the self-accommodation between different martensitic variants causing the internal twin structure. However, as the strength of parent phase is low enough for the plastic accommodation to occur the dislocation substructure in martensite be produced, in which case the invariant habit plane is difficult to form so the{225}_f and {557}_f habit planes are difficult to explain by the phenomenological crystallographic theory. So,there are some limitations for the martensitic invariant habit plane.In the present work the authors also suggest that the martensite morphology depends on the competition between self-accommodation and plastic accommodation including factors not only of strength but also of structure of the parent phase However, when the density of crystal defects is high dislocations rather than twinned martensite will form in spite of the higher strength of the parent phase.展开更多
The effect of compressive deformation tested above the M_s temperature on the martensite morphology in Fe-Ni-C alloys has been studied.In the Fe-30Ni-0.12C alloy,the M_s temperature is -50℃ The cylindrical specimens ...The effect of compressive deformation tested above the M_s temperature on the martensite morphology in Fe-Ni-C alloys has been studied.In the Fe-30Ni-0.12C alloy,the M_s temperature is -50℃ The cylindrical specimens were compressively deformed at -40℃.The strain rates were 10,20,30 and 40%.X-ray analysis and metallographic examination showed that no strain-induced martensite was found.After quench- ing to -53℃,some thin plates and unusual morphologies of lenticular martensites with bent and/or broken mid-ribs were observed.In the Fe-30Ni-0.34C alloy,the M_s temperature is -120℃.Compressive deformation with different strain rates were carried out at room temperature. After quenching to the liquid nitrogen temperature, some bent thin plate matensites(unbroken)occur- red.The transformed twins in bent plate were also bent and nearly parallel to the γ-α'interfaces. Orientation relationship between austenite and bent martensite has been examined by means of trans- mission electron microscope.It was proved that these unusual morphologies are inherent in the compressive pre-deformed austenite.展开更多
The morphologic,substructural and crystallographic characteristics of martensite in steels 60 and 60Si2Mn have been investigated by means of optical and transmission electron microscopy combined with B-M phenomenologi...The morphologic,substructural and crystallographic characteristics of martensite in steels 60 and 60Si2Mn have been investigated by means of optical and transmission electron microscopy combined with B-M phenomenological crystallographic theory.The average hab- it plane of martensite in medium carbon iron alloys is{225}_f.Experimental data on the habit plane and the orientation relationship between the austenite and martensite are in agreement with the B-M theoretical calculation of using the Bain strain and lattice invariant shear on (100)[011]_f.展开更多
1 Introduction The method of acoustic emission (AE)as a new technique to study the processesin metals and alloys in the solid phase hasbeen widely used and developed since thelast 20 years. Martensite transformationis...1 Introduction The method of acoustic emission (AE)as a new technique to study the processesin metals and alloys in the solid phase hasbeen widely used and developed since thelast 20 years. Martensite transformationis diffusionless. Because of changing fromone crystal structure to another by coopera-tive shear process the interfacial coherency展开更多
This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl...This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl(1 mol/L)+H_2SO_4(0.5 mol/L)solution.Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process.Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagneticα′-martensite phase under the stresses applied during cold rolling.This finding is in agreement with magnetic measurements using a vibrating sample magnetometer.Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage,representing a reduction in the material’s work-hardening ability.Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy.In contrast to the uniform corrosion,wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects,the passive potential range and breakdown potential increased by cold working,showing greater resistance to pit nucleation.Although pits were formed,the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop,as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.展开更多
Amorphous thin films of Ti51.78Ni22.24Pd25.98 alloys were deposited onto n-type(100) Si wafer by radio frequency magnetron sputtering. From X-ray diffraction patterns, the crystallization temperature of thin film on...Amorphous thin films of Ti51.78Ni22.24Pd25.98 alloys were deposited onto n-type(100) Si wafer by radio frequency magnetron sputtering. From X-ray diffraction patterns, the crystallization temperature of thin film on Si wafer is found to be higher than 553.1℃. The film heated at 750℃ for 1h quite crystallizes along with some precipitation, but at 550℃ it partially crystallizes. With heating for 50h at 450℃ before crystallization, the film will contain more B19′ phases after succeeding heat-treatment at 650℃, but less B19′ phases after 750℃ treatment are found. The fracture morphology of the film heated at 550℃ shows a flat pattern with more steps, whereas that of the film preparing at 750℃ displays a well-defined fine granulation structure. 550℃-heated film is harder than as-deposited film because of good cohesion between film and Si wafer.展开更多
文摘By using molecular dynamics computer simulation at atomic level, the effects of single dislocation and dipole dislocations on nucleation and growth of martensitic transformation have been studied. It was found that only the location of tension or compression stress fields of the dislocations are favorable for martensite nucleation in NiAl alloy and the dislocations can move to accommodate partly the transformation strain during the nucleation and growth of martensite. Combined with the molecular dynamics simulation, a two dimensional simulation for martensite morphology based on a dislocation model has been performed. Many factors related to martensitic transformation were considered, such as supercooling, interface energy, shear strain, normal strain and hydrostatic pressure. Different morphologies of martensites, similar to lath, lenticular, thin plate, couple-plate and lenticular couple-plate martensites observed in Fe-C and Fe-Ni-C alloys, were obtained.
文摘The strain tensor and displacement vector associated with lattice deformation were introduced to discuss the effect of self-accommodation and plastic accommodation in martensitic transformation,and the models for {557}_f and {3,10,15}_f martensite fomation were proposed, along with the experimental verification. It is considered that the invariant habit plane may result from the self-accommodation between different martensitic variants causing the internal twin structure. However, as the strength of parent phase is low enough for the plastic accommodation to occur the dislocation substructure in martensite be produced, in which case the invariant habit plane is difficult to form so the{225}_f and {557}_f habit planes are difficult to explain by the phenomenological crystallographic theory. So,there are some limitations for the martensitic invariant habit plane.In the present work the authors also suggest that the martensite morphology depends on the competition between self-accommodation and plastic accommodation including factors not only of strength but also of structure of the parent phase However, when the density of crystal defects is high dislocations rather than twinned martensite will form in spite of the higher strength of the parent phase.
文摘The effect of compressive deformation tested above the M_s temperature on the martensite morphology in Fe-Ni-C alloys has been studied.In the Fe-30Ni-0.12C alloy,the M_s temperature is -50℃ The cylindrical specimens were compressively deformed at -40℃.The strain rates were 10,20,30 and 40%.X-ray analysis and metallographic examination showed that no strain-induced martensite was found.After quench- ing to -53℃,some thin plates and unusual morphologies of lenticular martensites with bent and/or broken mid-ribs were observed.In the Fe-30Ni-0.34C alloy,the M_s temperature is -120℃.Compressive deformation with different strain rates were carried out at room temperature. After quenching to the liquid nitrogen temperature, some bent thin plate matensites(unbroken)occur- red.The transformed twins in bent plate were also bent and nearly parallel to the γ-α'interfaces. Orientation relationship between austenite and bent martensite has been examined by means of trans- mission electron microscope.It was proved that these unusual morphologies are inherent in the compressive pre-deformed austenite.
文摘The morphologic,substructural and crystallographic characteristics of martensite in steels 60 and 60Si2Mn have been investigated by means of optical and transmission electron microscopy combined with B-M phenomenological crystallographic theory.The average hab- it plane of martensite in medium carbon iron alloys is{225}_f.Experimental data on the habit plane and the orientation relationship between the austenite and martensite are in agreement with the B-M theoretical calculation of using the Bain strain and lattice invariant shear on (100)[011]_f.
文摘1 Introduction The method of acoustic emission (AE)as a new technique to study the processesin metals and alloys in the solid phase hasbeen widely used and developed since thelast 20 years. Martensite transformationis diffusionless. Because of changing fromone crystal structure to another by coopera-tive shear process the interfacial coherency
基金Shahid Chamran University of Ahvaz for supporting this research
文摘This study has evaluated the effect of different levels of cold rolling(from 0 to 50%)on the microstructural,magnetic,and mechanical properties and the corrosion behavior of 316L austenitic stainless steel in Na Cl(1 mol/L)+H_2SO_4(0.5 mol/L)solution.Microstructural examinations using optical microscopy revealed the development of a morphological texture from coaxial to elongated grains during the cold-rolling process.Phase analysis carried out on the basis of X-ray diffraction confirmed the formation of the ferromagneticα′-martensite phase under the stresses applied during cold rolling.This finding is in agreement with magnetic measurements using a vibrating sample magnetometer.Mechanical properties determined by tensile and Vickers microhardness tests demonstrated an upward trend in the hardness-to-yield strength ratio with increasing cold-rolling percentage,representing a reduction in the material’s work-hardening ability.Uniform and localized corrosion parameters were estimated via potentiodynamic polarization corrosion tests and electrochemical impedance spectroscopy.In contrast to the uniform corrosion,wherein the corrosion current density increased with increasing cold-working degree because of the high density of microstructural defects,the passive potential range and breakdown potential increased by cold working,showing greater resistance to pit nucleation.Although pits were formed,the cold-rolled material repassivation tendency decreased because of the broader hysteresis anodic loop,as confirmed experimentally by observation of the microscopic features after electrochemical cyclic polarization evaluations.
基金Project(20020248037) supported by the Specialized Research Fund for the Doctoral Program of Higher Education ofChina Project(02DJ14042) supported by the Science and Technology Commission of the Shanghai Municipal Government , China
文摘Amorphous thin films of Ti51.78Ni22.24Pd25.98 alloys were deposited onto n-type(100) Si wafer by radio frequency magnetron sputtering. From X-ray diffraction patterns, the crystallization temperature of thin film on Si wafer is found to be higher than 553.1℃. The film heated at 750℃ for 1h quite crystallizes along with some precipitation, but at 550℃ it partially crystallizes. With heating for 50h at 450℃ before crystallization, the film will contain more B19′ phases after succeeding heat-treatment at 650℃, but less B19′ phases after 750℃ treatment are found. The fracture morphology of the film heated at 550℃ shows a flat pattern with more steps, whereas that of the film preparing at 750℃ displays a well-defined fine granulation structure. 550℃-heated film is harder than as-deposited film because of good cohesion between film and Si wafer.