The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pai...The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.展开更多
In vitro cultures of primary cortical neurons are widely used to investigate neuronal function.However,it has yet to be fully investigated whether there are significant differences in development and function between ...In vitro cultures of primary cortical neurons are widely used to investigate neuronal function.However,it has yet to be fully investigated whether there are significant differences in development and function between cultured rodent and primate cortical neurons,and whether these differences influence the utilization of cultured cortical neurons to model pathological conditions.Using in vitro culture techniques combined with immunofluorescence and electrophysiological methods,our study found that the development and maturation of primary cerebral cortical neurons from cynomolgus monkeys were slower than those from mice.We used a microelectrode array technique to compare the electrophysiological differences in cortical neurons,and found that primary cortical neurons from the mouse brain began to show electrical activity earlier than those from the cynomolgus monkey.Although cultured monkey cortical neurons developed slowly in vitro,they exhibited typical pathological features-revealed by immunofluorescent staining-when infected with adeno-associated viral vectors expressing mutant huntingtin(HTT),the Huntington’s disease protein.A quantitative analysis of the cultured monkey cortical neurons also confirmed that mutant HTT significantly reduced the length of neurites.Therefore,compared with the primary cortical neurons of mice,cultured monkey cortical neurons have longer developmental and survival times and greater sustained physiological activity,such as electrophysiological activity.Our findings also suggest that primary cynomolgus monkey neurons cultured in vitro can simulate a cell model of human neurodegenerative disease,and may be useful for investigating time-dependent neuronal death as well as treatment via neuronal regeneration.All mouse experiments and protocols were approved by the Animal Care and Use Committee of Jinan University of China(IACUC Approval No.20200512-04)on May 12,2020.All monkey experiments were approved by the IACUC protocol(IACUC Approval No.LDACU 20190820-01)on August 23,2019 for animal management and use.展开更多
We compared spring-summer activity of adult female Agassiz’s Desert Tortoises (Gopherus agassizii) among three consecutive years (1997, 1998, and 1999) that differed dramatically in winter rainfall and annual plant p...We compared spring-summer activity of adult female Agassiz’s Desert Tortoises (Gopherus agassizii) among three consecutive years (1997, 1998, and 1999) that differed dramatically in winter rainfall and annual plant production at a wind energy facility in the Sonoran Desert of southern California. Winter rainfall was approximately 71%, 190%, and 17% of the long-term average (October-March = 114 mm) for this area in water years (WY) 1997, 1998, and 1999, respectively. The substantial precipitation caused by an El Ni?o Southern Oscillation (ENSO) event in WY 1998 produced a generous annual food plant supply (138.2 g dry biomass/ m2) in the spring. Primary production of winter annuals during below average rainfall years (WY 1997 and WY 1999) was reduced to 98.3 and 0.2 g/m2, respectively. Mean rates of movement and mean body condition indices (mass/length) did not differ significantly among the years. The drought year following ENSO (WY 1999) was statistically similar to ENSO in every other measured value, while WY 1997 (end of a two year drought) was statistically different from ENSO using activity area, minimum number of burrows used, and percentage of non-movements. Our data suggest that female G. agassizii activity can be influenced by environmental conditions in previous years.展开更多
A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results...A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.展开更多
Seasonal variability regarding the nature of precipitation and the activity of cumulus convection during the 1991 Meiyu season of Changjiang-Huaihe River Basin(Jianghuai)has been investigated by calculating apparent h...Seasonal variability regarding the nature of precipitation and the activity of cumulus convection during the 1991 Meiyu season of Changjiang-Huaihe River Basin(Jianghuai)has been investigated by calculating apparent heat source/apparent moisture sink and analyzing TBB(cloud-top blackbody radiation temperature)data.It is found that three periods of strong ascending motion during the Meiyu season lead to three episodes of heavy rain,and the latent heat due to the precipitation is of the sole heat source of the atmosphere.The nature of precipitation shows distinct seasonal variability,from frontal precipitation of the first episode to the extremely strong convective precipitation of the third episode.TBB field of East Asia may well reflect not only the intensity of convection and rainfall,but also the movement of rain belt and convection belt.In the whole Meiyu season.convection belt mainly stays in Jianghuai.but may shift within the domain of East Asia.Its locating in Jianghuai or not determines the maintenance or break of Meiyu.In the third episode,the narrow convection belt over Jianghuai is mainly caused by southwest monsoon which takes moist and convective atmosphere from tropical ocean.展开更多
Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heteroju...Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heterojunction photocatalysis.Herein,Bi_(2)O_(2)S/NiFe_(2)O_(4) nanosheets heterojunction with ultrastrong inter-face interaction and high internal electric field are designed by an in-situ growth method.Tentative and theoretical consequences prove that the interfacial interaction and internal electric field not only act as the electron flow bridge but also decrease the electrons shift energy obstacle,thus speeding up electrons transfer and achieving effective spatial electron-hole separation.Therefore,a large amount of·O_(2)^(-)and holes as active species were generated.Remarkably,Bi_(2)O_(2) S/NiFe_(2)O_(4) establishes a considerably boosted photocatalytic performance for tetracycline degradation(0.032 min^(-1)),which is about 14.2-fold and 7.8-fold of the pristine BOS and NFO,respectively.This work provides a promising motivation for modulating charge transfer by interface control and internal electric field to boost photocatalytic performance.展开更多
太阳高能活动爆发与活动区内的电流结构有着密切的联系,安培(Ampere)定律j_(z)=1/μ_(0)(▽×B)_(z)是测量活动区内视向电流密度的理论基础。由于实测的矢量磁场中不可避免地存在随机噪声,因此,应用安培定律的不同形式计算的电流密...太阳高能活动爆发与活动区内的电流结构有着密切的联系,安培(Ampere)定律j_(z)=1/μ_(0)(▽×B)_(z)是测量活动区内视向电流密度的理论基础。由于实测的矢量磁场中不可避免地存在随机噪声,因此,应用安培定律的不同形式计算的电流密度存在显著的差异。为了比较不同形式计算结果的差异并从中探索一种实用的电流计算方法,基于太阳动力学天文台(Solar Dynamic Observatory,SDO)/日震学与磁场成像仪(Helioseismic and Magnetic Imager,HMI)在2011年2月15日测量的活动区AR11158的矢量磁图,利用安培定律的微分算法和积分算法分别计算了活动区内视向电流密度的分布图。结果显示,微分算法获得的视向电流密度分布图受随机噪声的影响要远比积分算法获得的结果大,电流分布图中的电流结构没有积分算法获得的结果清晰。另外,在扩大积分环路半径的情况下,所计算的电流分布图中的噪声信号快速降低,视向电流分布图中的电流结构更清晰。但是当继续扩大积分环路半径时,在获得清晰电流分布图的同时,部分精细结构也随之失真。该研究结果论证了适当扩大积分环路计算视向电流分布图可以降低计算结果受随机噪声的影响,从而获得清晰真实的视向电流分布图,但是积分路径的半径过大在消除噪声影响的同时会丢失电流分布中的一些精细结构。因此在实际计算电流的过程中,应该利用高分辨率的矢量磁图,选定合适的积分路径,利用安培定律的积分算法来计算活动区的视向电流,从而帮助我们探索耀斑爆发与活动区内电流结构的关系。展开更多
基金Project(51274242)supported by the National Natural Science Foundation of China
文摘The mechanism of seeded precipitation of sodium aluminate solution was studied by measuring the seeded-precipitation rate and electrical conductivity online, as well as calculating the activity and fraction of ion pair. The results show that the electrical conductivity of sodium aluminate slurry linearly decreases with increasing aluminum hydroxide addition. Moreover, both the electrical conductivity of slurry and the difference in electrical conductivity between sodium aluminate solution and slurry remarkably decline in the first 60 min before gradually increasing in the preliminary 10 h and finally reaching almost the same level after 10 h. In low Na2 O concentration solution the activities of Na OH and Na Al(OH)4 in seeded precipitation are high, which can enlarge the difference in conductivity between slurry and solution. Additionally, more ion pairs exist in solution in preliminary seeded precipitation, and the adsorption of Na+Al(OH)4- on seed surface is likely to break the equilibrium of ion pair formation and to decrease the difference in conductivity in preliminary seeded precipitation.
基金This work was supported by the National Natural Science Foundation of China,No.81922026(to SY)the National Key Research and Development Program of China Stem Cell and Translational Research,No.2017YFA0105104(to SY)+3 种基金Key Field Research and Development Program of Guangdong Province,No.2018B030337001(to XJL)Guangdong Key Laboratory of Non-human Primate Models of Brain Diseases,No.2020B121201006(to XJL)Guangzhou Key Research Program on Brain Science,No.202007030008(to SY)the Fundamental Research Funds for the Central Universities,No.21619104(to SY).
文摘In vitro cultures of primary cortical neurons are widely used to investigate neuronal function.However,it has yet to be fully investigated whether there are significant differences in development and function between cultured rodent and primate cortical neurons,and whether these differences influence the utilization of cultured cortical neurons to model pathological conditions.Using in vitro culture techniques combined with immunofluorescence and electrophysiological methods,our study found that the development and maturation of primary cerebral cortical neurons from cynomolgus monkeys were slower than those from mice.We used a microelectrode array technique to compare the electrophysiological differences in cortical neurons,and found that primary cortical neurons from the mouse brain began to show electrical activity earlier than those from the cynomolgus monkey.Although cultured monkey cortical neurons developed slowly in vitro,they exhibited typical pathological features-revealed by immunofluorescent staining-when infected with adeno-associated viral vectors expressing mutant huntingtin(HTT),the Huntington’s disease protein.A quantitative analysis of the cultured monkey cortical neurons also confirmed that mutant HTT significantly reduced the length of neurites.Therefore,compared with the primary cortical neurons of mice,cultured monkey cortical neurons have longer developmental and survival times and greater sustained physiological activity,such as electrophysiological activity.Our findings also suggest that primary cynomolgus monkey neurons cultured in vitro can simulate a cell model of human neurodegenerative disease,and may be useful for investigating time-dependent neuronal death as well as treatment via neuronal regeneration.All mouse experiments and protocols were approved by the Animal Care and Use Committee of Jinan University of China(IACUC Approval No.20200512-04)on May 12,2020.All monkey experiments were approved by the IACUC protocol(IACUC Approval No.LDACU 20190820-01)on August 23,2019 for animal management and use.
基金supported in part by the US Geological Survey,Western Ecological Research Center,Joshua Tree National Park,and the Bureau of Land Management,California Desert DistrictAnalysis and manuscript preparation was supported by the California Energy Commission,Research Development and Demonstration Division,Public Interest Energy Research program(contract#500-09-020)
文摘We compared spring-summer activity of adult female Agassiz’s Desert Tortoises (Gopherus agassizii) among three consecutive years (1997, 1998, and 1999) that differed dramatically in winter rainfall and annual plant production at a wind energy facility in the Sonoran Desert of southern California. Winter rainfall was approximately 71%, 190%, and 17% of the long-term average (October-March = 114 mm) for this area in water years (WY) 1997, 1998, and 1999, respectively. The substantial precipitation caused by an El Ni?o Southern Oscillation (ENSO) event in WY 1998 produced a generous annual food plant supply (138.2 g dry biomass/ m2) in the spring. Primary production of winter annuals during below average rainfall years (WY 1997 and WY 1999) was reduced to 98.3 and 0.2 g/m2, respectively. Mean rates of movement and mean body condition indices (mass/length) did not differ significantly among the years. The drought year following ENSO (WY 1999) was statistically similar to ENSO in every other measured value, while WY 1997 (end of a two year drought) was statistically different from ENSO using activity area, minimum number of burrows used, and percentage of non-movements. Our data suggest that female G. agassizii activity can be influenced by environmental conditions in previous years.
基金Project supported by the Technology Innovation Project of University (No. 705013)
文摘A new process for removing the pollutants in aqueous solution-activated alumina bed in pulsed high-voltage electric field was investigated for the removal of phenol under different conditions. The experimental results indicated the increase in removal rate with increasing applied voltage, increasing pH value of the solution, aeration, and adding Fe^2+. The removal rate of phenol could reach 72.1% when air aeration flow rate was 1200 ml/min, and 88.2% when 0.05 mmol/L Fe^2+ was added into the solution under the conditions of applied voltage 25 kV, initial phenol concentration of 5 mg/L, and initial pH value 5.5. The addition of sodium carbonate reduced the phenol removal rate. In the pulsed high-voltage electric field, local discharge occurred at the surface of activated alumina, which promoted phenol degradation in the thin water film. At the same time, the space-time distribution of gas-liquid phases was more uniform and the contact areas of the activated species generated from the discharge and the pollutant molecules were much wider due to the effect of the activated alumina bed. The synthetical effects of the pulsed high-voltage electric field and the activated alumina particles accelerated phenol degradation.
基金This work was supported jointly by the project of Sino-Japan Cooperation Study on Asia Monsoonthe National Natural Science Foundation of China.
文摘Seasonal variability regarding the nature of precipitation and the activity of cumulus convection during the 1991 Meiyu season of Changjiang-Huaihe River Basin(Jianghuai)has been investigated by calculating apparent heat source/apparent moisture sink and analyzing TBB(cloud-top blackbody radiation temperature)data.It is found that three periods of strong ascending motion during the Meiyu season lead to three episodes of heavy rain,and the latent heat due to the precipitation is of the sole heat source of the atmosphere.The nature of precipitation shows distinct seasonal variability,from frontal precipitation of the first episode to the extremely strong convective precipitation of the third episode.TBB field of East Asia may well reflect not only the intensity of convection and rainfall,but also the movement of rain belt and convection belt.In the whole Meiyu season.convection belt mainly stays in Jianghuai.but may shift within the domain of East Asia.Its locating in Jianghuai or not determines the maintenance or break of Meiyu.In the third episode,the narrow convection belt over Jianghuai is mainly caused by southwest monsoon which takes moist and convective atmosphere from tropical ocean.
基金the financial support by the National Natural Science Foundation of China as general projects(Grant Nos.51779068,52070066,52211530084,42277059,and 22006029)Tianjin Commission of Science and Technology as key technologies R&D projects(No.21YFSNSN00250)+1 种基金Doctoral Inno-vation Project of Hebei Province(CXZZBS2023031)the Royal Society/International Exchanges 2021 Cost Share/NSFC(Grant No.IEC\NSFC\211142).
文摘Heterojunction photocatalysts have shown considerable activities for organic pollutants degradation.However,the faint connection interface and inferior charge shift efficiency critically block the property of heterojunction photocatalysis.Herein,Bi_(2)O_(2)S/NiFe_(2)O_(4) nanosheets heterojunction with ultrastrong inter-face interaction and high internal electric field are designed by an in-situ growth method.Tentative and theoretical consequences prove that the interfacial interaction and internal electric field not only act as the electron flow bridge but also decrease the electrons shift energy obstacle,thus speeding up electrons transfer and achieving effective spatial electron-hole separation.Therefore,a large amount of·O_(2)^(-)and holes as active species were generated.Remarkably,Bi_(2)O_(2) S/NiFe_(2)O_(4) establishes a considerably boosted photocatalytic performance for tetracycline degradation(0.032 min^(-1)),which is about 14.2-fold and 7.8-fold of the pristine BOS and NFO,respectively.This work provides a promising motivation for modulating charge transfer by interface control and internal electric field to boost photocatalytic performance.
文摘太阳高能活动爆发与活动区内的电流结构有着密切的联系,安培(Ampere)定律j_(z)=1/μ_(0)(▽×B)_(z)是测量活动区内视向电流密度的理论基础。由于实测的矢量磁场中不可避免地存在随机噪声,因此,应用安培定律的不同形式计算的电流密度存在显著的差异。为了比较不同形式计算结果的差异并从中探索一种实用的电流计算方法,基于太阳动力学天文台(Solar Dynamic Observatory,SDO)/日震学与磁场成像仪(Helioseismic and Magnetic Imager,HMI)在2011年2月15日测量的活动区AR11158的矢量磁图,利用安培定律的微分算法和积分算法分别计算了活动区内视向电流密度的分布图。结果显示,微分算法获得的视向电流密度分布图受随机噪声的影响要远比积分算法获得的结果大,电流分布图中的电流结构没有积分算法获得的结果清晰。另外,在扩大积分环路半径的情况下,所计算的电流分布图中的噪声信号快速降低,视向电流分布图中的电流结构更清晰。但是当继续扩大积分环路半径时,在获得清晰电流分布图的同时,部分精细结构也随之失真。该研究结果论证了适当扩大积分环路计算视向电流分布图可以降低计算结果受随机噪声的影响,从而获得清晰真实的视向电流分布图,但是积分路径的半径过大在消除噪声影响的同时会丢失电流分布中的一些精细结构。因此在实际计算电流的过程中,应该利用高分辨率的矢量磁图,选定合适的积分路径,利用安培定律的积分算法来计算活动区的视向电流,从而帮助我们探索耀斑爆发与活动区内电流结构的关系。