Theoretical studies on the electronic and geometric structures, the trend in DNA-binding affinities as well as the the structure-activity relationship (SAR) of a series of water-soluble Ru(II) methylimidazole comp...Theoretical studies on the electronic and geometric structures, the trend in DNA-binding affinities as well as the the structure-activity relationship (SAR) of a series of water-soluble Ru(II) methylimidazole complexes, i.e. [Ru(Mehn)4iip]^2+ (1) (MeIm=l-methylimidazole, iip=2-(1H-imidazo-4-group)-lH-imidazo[n,5-f][1,10]phenanthroline), [Ru(MeIm)4tip]^2+ (2) (tip=2-(thiophene-2-group)-lH-imidazo[4,5-f] [i,10]phenanthroline), and [Ru(Melm)42ntz]^2+ (3) (2ntz=2-(2-nitro-l,3-thiazole-5-group)-lH-imidazo[4,5-f][1,10]phenanthroline), were car- ried out using the density functional theory (DFT). The electronic structures of these Ru(II) complexes were analyzed on the basis of their geometric structures optimized in aqueous solution, and the trend in the DNA-binding constants (Kb) was reasonably explained. The results show that the replacement of imidazole ligand by thiophene ligand can effectively improve the DNA-binding affinity of the complex. Meanwhile, it was found that introduc- ing the stronger electronegative N atom and NO2 group on terminal loop of intercalative ligand can obviously reduce the complex's LUMO and HOMO-LUMO gap energies. Based on these findings, the designed complex [Ru(MeIm)42ntz]^2+ (3) can be expected to have the greatest Kb value in complexes 1-3. In addition, the structure-activity relationships and antitumor mechanism were also carefully discussed, and the antimetastatic activity of the designed complex 3 was predicted. Finally, the electronic absorption spectra of this series of complexes in aqueous solution were calculated, simulated and assigned using DFT/TDDFT methods as well as conductor-like polarizable continuum model (CPCM), and were in good agreement with the experimental results.展开更多
As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,ag...As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,agrochemical,material industrial and other chemical production.In this research,we demonstrated transformations of biomass-based ethyl levulinate(EL)into GVL and pyrrolidones by using heterogeneous catalysts(CNT-Ru-1)with N-heterocyclic carbene ruthenium(NHC-Ru)complex grafted on multi-walled carbon nanotube(CNT).The Ru catalyst showed high efficiency on EL hydrogenation to GVL with both EL conversion and GVL yield exceeding 99%.Moreover,the Ru catalyst readily promoted reductive amination of EL in the presence of various amines for pyrrolidone synthesis.Finally,the Ru catalyst was also applicable to hydrogenation of various carbonyl compounds for the synthesis of the corresponding alcohols with excellent catalytic performance.The research provides insight for heterogenizing the homogeneous noble metal-based catalysts with high catalytic active for biomass-based transformations.展开更多
Five ruthenium complexes such as Phen-Ru-Phen, Phen-Ru-Bipy, Phen-Ru-Quin, Quin-Ru-Quin and Bipy-Ru-Quin (where Phen=1, 10-phenanthroline, Quin=8-hydroxyquinoline, Bipy=2, 2′-bipyridine) were synthesized and used as ...Five ruthenium complexes such as Phen-Ru-Phen, Phen-Ru-Bipy, Phen-Ru-Quin, Quin-Ru-Quin and Bipy-Ru-Quin (where Phen=1, 10-phenanthroline, Quin=8-hydroxyquinoline, Bipy=2, 2′-bipyridine) were synthesized and used as catalysts for the oxidation of benzylic and primary aliphatic alcohols with iodosylbenzene as oxidant. The oxidations were carried out at room temperature, affording the corresponding aldehydes and ketones with high selectivity.展开更多
The new complexes [Ru(NO)(PPh3)]2(h2-Cm)(m=60 1 or 70 2) have been prepared by heating a solution of C60(or C70) with [Ru(NO)2(PPh3)2] in toluene. They have been characterized by elemental analysis, IR, UV/VIS, XPS, ...The new complexes [Ru(NO)(PPh3)]2(h2-Cm)(m=60 1 or 70 2) have been prepared by heating a solution of C60(or C70) with [Ru(NO)2(PPh3)2] in toluene. They have been characterized by elemental analysis, IR, UV/VIS, XPS, 13C and 31P NMR spectroscopy. The photovaltaic effect for the new compounds has been studied.展开更多
Ferrocene-terminated trans-Ru(dppm)2 (dppm=Ph2PCH2PPh2)-containing molecular wires with alligator clips were prepared. They are suitable for self-assembly on gold electrode to investigate the influence of metal incor...Ferrocene-terminated trans-Ru(dppm)2 (dppm=Ph2PCH2PPh2)-containing molecular wires with alligator clips were prepared. They are suitable for self-assembly on gold electrode to investigate the influence of metal incorporation on the electron transportation property of the molecular wires.展开更多
Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose an...Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes.展开更多
Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F....Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.展开更多
This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
Three half-sandwich ruthenium(II) p-cymene complexes containing naphthalenebased Schiff base ligands [Ru(p-cymene)LCl](2 a~2 c) have been synthesized and characterized. Both Schiff-base ligands and ruthenium co...Three half-sandwich ruthenium(II) p-cymene complexes containing naphthalenebased Schiff base ligands [Ru(p-cymene)LCl](2 a~2 c) have been synthesized and characterized. Both Schiff-base ligands and ruthenium complexes were fully characterized by ^1H and ^13C NMR spectra, mass spectrometry and infrared spectrometry. The molecular structure of ruthenium complex 2 b was confirmed by single-crystal X-ray diffraction methods. For the complex: C(24H23ClN2ORu, Mr = 524.02, monoclinic, space group P21/c, a = 12.3888(4), b = 17.3296(6), c = 20.7744(7)A°, β = 92.8000(10)°, V = 4454.8(3) A°^3, Z = 8, Dc = 1.563 g/cm^3, μ = 0.936 mm^-1, F(000) = 2128, S = 1.154, the final R = 0.0309 and w R = 0.0703. Moreover, these ruthenium complexes are active catalysts for the hydrogenation of nitroarenes to aromatic anilines in the presence of sodium tetrahydroborate(NaBH4) reducing agent.展开更多
A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) an...A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). Thus, in order to predict the cytotoxic potentials of these compounds, quantitative structure-activity relationship studies were carried out using the methods of quantum chemistry. Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities. The models present the following statistical indicators: regression correlation coefficient R2 = 0.986 - 0.905, standard deviation S = 0.516 - 0.153, Fischer test F = 106.718 - 14.220, correlation coefficient of cross-validation = 0.985- 0.895 and = 0.010 - 0.001. The statistical characteristics of the established QSAR models satisfy the acceptance and external validation criteria, thereby accrediting their good performance. The models developed show that the variation of the free enthalpy of reaction , the dipole moment μ and the charge of the ligand in the complex Ql, are the explanatory and predictive quantum descriptors correlated with the values of the anti-cancer activity of the studied complexes. Moreover, the charge of the ligand is the priority descriptor for the prediction of the cytotoxicity of the compounds studied. Furthermore, QSAR models developed are statistically significant and predictive, and could be used for the design and synthesis of new anti-cancer molecules.展开更多
Two new complexes, [W2Ag2S8?Ca(DMF)6]n 1 and [WAgS4?Na(DMF)3]n 2, have been synthesized and characterized. Single-crystal X-ray analyses show both 1 and 2 have {WAgS4}n anion linear chains, but 1 has a discrete [Ca(DM...Two new complexes, [W2Ag2S8?Ca(DMF)6]n 1 and [WAgS4?Na(DMF)3]n 2, have been synthesized and characterized. Single-crystal X-ray analyses show both 1 and 2 have {WAgS4}n anion linear chains, but 1 has a discrete [Ca(DMF)6]2+ cation while 2 is a linear chain. UV-Visible-Near-IR spectroscopy data show that the bandgaps of the two complexes are 1.86 and 1.99 eV, respectively. Electrical conductivity measurements reveal the conductivities of 1 and 2 are 10?7 and 10?8 Scm?1, respectively and they exhibit thermally activated temperature depen- dence, which may be attributed to semiconductors.展开更多
Autosomal recessive mutations in the PARK7 gene,which encodes for the protein DJ-1,result in a loss of function and are a cause of familial Parkinson’s disease(PD),while increased wild-type DJ-1protein levels are a...Autosomal recessive mutations in the PARK7 gene,which encodes for the protein DJ-1,result in a loss of function and are a cause of familial Parkinson’s disease(PD),while increased wild-type DJ-1protein levels are associated with some forms of cancer.Several functions of DJ-1 have been described,with the greatest evidence indicating that DJ-1 is a redox-sensitive protein involved in the regulation of oxidative stress and cell survival.展开更多
A novel dimeric complex [Ru3 (μ3-O)(μ-CH3COO)(CO)]2(μ-dppf)(μ-odppf)(dppf = 1, 1'-bis(diphenylphosphio)ferrocene, odppf = 1, 1'-bis(oxodiphenylphosphoranyl)ferrocene) (1) of oxo-centered triruthenium-aecta...A novel dimeric complex [Ru3 (μ3-O)(μ-CH3COO)(CO)]2(μ-dppf)(μ-odppf)(dppf = 1, 1'-bis(diphenylphosphio)ferrocene, odppf = 1, 1'-bis(oxodiphenylphosphoranyl)ferrocene) (1) of oxo-centered triruthenium-aectate cluster units was synthesized and characterized by X-ray crystallography. Compound 1 exhibits a cyclic structure formed by linkages of two triruthenium cluster units Ru3 (μ3-O)(μ-CH3COO)6(CO) through dppf and odppf ligands, respectively. The diameter of the molecular loop is ca. 1.0 nm.展开更多
The reaction of a ruthenium carbide complex RuCl2(C:)(PCy3)2 with [H(Et2O)x]+[BF4]- at a molar ratio of 1:2 produced a two-core ruthenium carbene complex, {[RuCl(=CHPCy3)(PCy3)]2(μ-Cl)3}+·[BF4]-,...The reaction of a ruthenium carbide complex RuCl2(C:)(PCy3)2 with [H(Et2O)x]+[BF4]- at a molar ratio of 1:2 produced a two-core ruthenium carbene complex, {[RuCl(=CHPCy3)(PCy3)]2(μ-Cl)3}+·[BF4]-, in the form of a yellow-green crystalline solid in a yield of 94%. This two-core ruthenium complex is a selective catalyst for ring closing metathesis of unsubstituted terminal dienes. More importantly, no isomerized byproduct was observed for N-substrates when the two-core ruthenium complex was used as the catalyst at an elevated temperature(137 °C), indicating that the complex is a chemo-selective catalyst for ring closing metathesis reactions.展开更多
A series of chiral secondary alcohols were easily prepared by means of asymmetric hydrogenation of prochiral aromatic ketones using a new((Rax)-BuP)/(R,R)-DPEN-Ru(Ⅱ) complex catalyst system.The hydrogenation ...A series of chiral secondary alcohols were easily prepared by means of asymmetric hydrogenation of prochiral aromatic ketones using a new((Rax)-BuP)/(R,R)-DPEN-Ru(Ⅱ) complex catalyst system.The hydrogenation of 2-methylacetophenone in n-butanol (t-BuOK/Ru =45.6/1,S/C = 500,20 atm.of H2,20℃,48 h) afforded(S)-1-(2'-methylphenyl)ethanol in 92%ee and〉99% conversion.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20903027), the Natural Science Foundation of Guangdong Province of China (No.9452402301001941), the Medical Scientific Research Foundation of Guangdong Province of China (No.B2013297), and the University Student in Guangdong Province Innovation and Entrepreneurship Train ing Program (No.1057112019 and No.1057112013).
文摘Theoretical studies on the electronic and geometric structures, the trend in DNA-binding affinities as well as the the structure-activity relationship (SAR) of a series of water-soluble Ru(II) methylimidazole complexes, i.e. [Ru(Mehn)4iip]^2+ (1) (MeIm=l-methylimidazole, iip=2-(1H-imidazo-4-group)-lH-imidazo[n,5-f][1,10]phenanthroline), [Ru(MeIm)4tip]^2+ (2) (tip=2-(thiophene-2-group)-lH-imidazo[4,5-f] [i,10]phenanthroline), and [Ru(Melm)42ntz]^2+ (3) (2ntz=2-(2-nitro-l,3-thiazole-5-group)-lH-imidazo[4,5-f][1,10]phenanthroline), were car- ried out using the density functional theory (DFT). The electronic structures of these Ru(II) complexes were analyzed on the basis of their geometric structures optimized in aqueous solution, and the trend in the DNA-binding constants (Kb) was reasonably explained. The results show that the replacement of imidazole ligand by thiophene ligand can effectively improve the DNA-binding affinity of the complex. Meanwhile, it was found that introduc- ing the stronger electronegative N atom and NO2 group on terminal loop of intercalative ligand can obviously reduce the complex's LUMO and HOMO-LUMO gap energies. Based on these findings, the designed complex [Ru(MeIm)42ntz]^2+ (3) can be expected to have the greatest Kb value in complexes 1-3. In addition, the structure-activity relationships and antitumor mechanism were also carefully discussed, and the antimetastatic activity of the designed complex 3 was predicted. Finally, the electronic absorption spectra of this series of complexes in aqueous solution were calculated, simulated and assigned using DFT/TDDFT methods as well as conductor-like polarizable continuum model (CPCM), and were in good agreement with the experimental results.
基金the financial support from the National Natural Science Foundation of China(U1810111,51872124 and21676116)Natural Science Foundation of Guangdong Province,China(2018B030311010)+1 种基金the Fundamental Research Funds for the Central Universities(21617431)Key Laboratory of Biomass Chemical Engineering of Ministry of Education,Zhejiang University(2018BCE002)
文摘As a renewable biomass-based compound with wide applications in food additives,fine chemical synthesis and fuels,γ-valerolactone(GVL)has attached much attention.While,pyrrolidones are widely used in pharmaceutical,agrochemical,material industrial and other chemical production.In this research,we demonstrated transformations of biomass-based ethyl levulinate(EL)into GVL and pyrrolidones by using heterogeneous catalysts(CNT-Ru-1)with N-heterocyclic carbene ruthenium(NHC-Ru)complex grafted on multi-walled carbon nanotube(CNT).The Ru catalyst showed high efficiency on EL hydrogenation to GVL with both EL conversion and GVL yield exceeding 99%.Moreover,the Ru catalyst readily promoted reductive amination of EL in the presence of various amines for pyrrolidone synthesis.Finally,the Ru catalyst was also applicable to hydrogenation of various carbonyl compounds for the synthesis of the corresponding alcohols with excellent catalytic performance.The research provides insight for heterogenizing the homogeneous noble metal-based catalysts with high catalytic active for biomass-based transformations.
基金financially supported by the National Natural Science Foundation of China(No.20174031).
文摘Five ruthenium complexes such as Phen-Ru-Phen, Phen-Ru-Bipy, Phen-Ru-Quin, Quin-Ru-Quin and Bipy-Ru-Quin (where Phen=1, 10-phenanthroline, Quin=8-hydroxyquinoline, Bipy=2, 2′-bipyridine) were synthesized and used as catalysts for the oxidation of benzylic and primary aliphatic alcohols with iodosylbenzene as oxidant. The oxidations were carried out at room temperature, affording the corresponding aldehydes and ketones with high selectivity.
基金support of this work by the Doctor programe of Higher Education of China(No.98038410)Natural Science Foundation of Fujian(No.E0110001)Self-select program of Xiamen University.
文摘The new complexes [Ru(NO)(PPh3)]2(h2-Cm)(m=60 1 or 70 2) have been prepared by heating a solution of C60(or C70) with [Ru(NO)2(PPh3)2] in toluene. They have been characterized by elemental analysis, IR, UV/VIS, XPS, 13C and 31P NMR spectroscopy. The photovaltaic effect for the new compounds has been studied.
基金This work was supported by the National Natural Science Foundation of China No. 20074036.
文摘Ferrocene-terminated trans-Ru(dppm)2 (dppm=Ph2PCH2PPh2)-containing molecular wires with alligator clips were prepared. They are suitable for self-assembly on gold electrode to investigate the influence of metal incorporation on the electron transportation property of the molecular wires.
基金supported by the National Natural Science Foundation of China(31970516 and 32372104)the Foundation of Hubei Hongshan Laboratory(2021hszd014).
文摘Cotton provides the most abundant natural fiber for the textile industry.The mature cotton fiber largely consists of secondary cell walls with the highest proportion of cellulose and a small amount of hemicellulose and lignin.To dissect the roles of hemicellulosic polysaccharides during fiber development,four IRREGULAR XYLEM 15(IRX15)genes,GhIRX15-1/-2/-3/-4,were functionally characterized in cotton.These genes encode DUF579 domain-containing proteins,which are homologs of AtIRX15 involved in xylan biosynthesis.The four GhIRX15 genes were predominantly expressed during fiber secondary wall thickening,and the encoded proteins were localized to the Golgi apparatus.Each GhIRX15 gene could restore the xylan deficient phenotype in the Arabidopsis irx15irx15l double mutant.Silencing of GhIRX15s in cotton resulted in shorter mature fibers with a thinner cell wall and reduced cellulose content as compared to the wild type.Intriguingly,GhIRX15-2 and GhIRX15-4 formed homodimers and heterodimers.In addition,the GhIRX15s showed physical interaction with glycosyltransferases GhGT43C,GhGT47A and GhGT47B,which are responsible for synthesis of the xylan backbone and reducing end sequence.Moreover,the GhIRX15s can form heterocomplexes with enzymes involved in xylan modification and side chain synthesis,such as GhGUX1/2,GhGXM1/2 and GhTBL1.These findings suggest that GhIRX15s participate in fiber xylan biosynthesis and modulate fiber development via forming large multiprotein complexes.
基金supported by grants from the National Natural Science Foundation of China(31901835)the Science and Technology Planning Project of Henan Province of China(212102110145)the International(Regional)Cooperation and Exchange Program of the National Natural Science Foundation of China(31961143018).
文摘Fusarium pseudograminearum is a devastating pathogen that causes Fusarium crown rot(FCR)in wheat and poses a significant threat to wheat production in terms of grain yield and quality.However,the mechanism by which F.pseudograminearum infects wheat remains unclear.In this study,we aimed to elucidate these mechanisms by constructing a T-DNA insertion mutant library for the highly virulent strain WZ-8A of F.pseudograminearum.By screening this mutant library,we identified nine independent mutants that displayed impaired pathogenesis in barley leaves.Among these mutants,one possessed a disruption in the gene FpRCO1 that is an ortholog of Saccharomyces cerevisiae RCO1,encoding essential component of the Rpd3S histone deacetylase complex in F.pseudograminearum.To further investigate the role of FpRCO1 in F.pseudograminearum,we employed a split-marker approach to knock out FpRCO1 in F.pseudograminearum WZ-8A.FpRCO1 deletion mutants exhibit reduced vegetative growth,conidium production,and virulence in wheat coleoptiles and barley leaves,whereas the complementary strain restores these phenotypes.Moreover,under stress conditions,the FpRCO1 deletion mutants exhibited increased sensitivity to NaCl,sorbitol,and SDS,but possessed reduced sensitivity to H_(2)O_(2)compared to these characteristics in the wild-type strain.RNA-seq analysis revealed that deletion of FpRCO1 affected gene expression(particularly the downregulation of TRI gene expression),thus resulting in significantly reduced deoxynivalenol(DON)production.In summary,our findings highlight the pivotal role of FpRCO1 in regulating vegetative growth and development,asexual reproduction,DON production,and pathogenicity of F.pseudograminearum.This study provides valuable insights into the molecular mechanisms underlying F.pseudograminearum infection in wheat and may pave the way for the development of novel strategies to combat this devastating disease.
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
基金financially supported by the National Nature Science Foundation of China(21102004)Natural Science Foundation of Anhui Province(1708085MB44)the Natural Science Foundation of the Anhui Higher Education Institutions(KJ2016A845)
文摘Three half-sandwich ruthenium(II) p-cymene complexes containing naphthalenebased Schiff base ligands [Ru(p-cymene)LCl](2 a~2 c) have been synthesized and characterized. Both Schiff-base ligands and ruthenium complexes were fully characterized by ^1H and ^13C NMR spectra, mass spectrometry and infrared spectrometry. The molecular structure of ruthenium complex 2 b was confirmed by single-crystal X-ray diffraction methods. For the complex: C(24H23ClN2ORu, Mr = 524.02, monoclinic, space group P21/c, a = 12.3888(4), b = 17.3296(6), c = 20.7744(7)A°, β = 92.8000(10)°, V = 4454.8(3) A°^3, Z = 8, Dc = 1.563 g/cm^3, μ = 0.936 mm^-1, F(000) = 2128, S = 1.154, the final R = 0.0309 and w R = 0.0703. Moreover, these ruthenium complexes are active catalysts for the hydrogenation of nitroarenes to aromatic anilines in the presence of sodium tetrahydroborate(NaBH4) reducing agent.
文摘A series of ruthenium azopyridine complexes have recently been investigated due to their potential cytotoxic activities against renal cancer (A498), lung cancer (H226), ovarian cancer (IGROV), breast cancer (MCF-7) and colon cancer (WIDR). Thus, in order to predict the cytotoxic potentials of these compounds, quantitative structure-activity relationship studies were carried out using the methods of quantum chemistry. Five Quantitative Structure Activity Relationship (QSAR) models were obtained from the determined quantum descriptors and the different activities. The models present the following statistical indicators: regression correlation coefficient R2 = 0.986 - 0.905, standard deviation S = 0.516 - 0.153, Fischer test F = 106.718 - 14.220, correlation coefficient of cross-validation = 0.985- 0.895 and = 0.010 - 0.001. The statistical characteristics of the established QSAR models satisfy the acceptance and external validation criteria, thereby accrediting their good performance. The models developed show that the variation of the free enthalpy of reaction , the dipole moment μ and the charge of the ligand in the complex Ql, are the explanatory and predictive quantum descriptors correlated with the values of the anti-cancer activity of the studied complexes. Moreover, the charge of the ligand is the priority descriptor for the prediction of the cytotoxicity of the compounds studied. Furthermore, QSAR models developed are statistically significant and predictive, and could be used for the design and synthesis of new anti-cancer molecules.
基金This research was supported by the State Key Laboratory of Structural Chemistry, the National Science and Technology of China (001CB1089), the Chinese Academy of Sciences (CAS), the National Science Foundation of China (20273073, 20333070, 90206040)
文摘Two new complexes, [W2Ag2S8?Ca(DMF)6]n 1 and [WAgS4?Na(DMF)3]n 2, have been synthesized and characterized. Single-crystal X-ray analyses show both 1 and 2 have {WAgS4}n anion linear chains, but 1 has a discrete [Ca(DMF)6]2+ cation while 2 is a linear chain. UV-Visible-Near-IR spectroscopy data show that the bandgaps of the two complexes are 1.86 and 1.99 eV, respectively. Electrical conductivity measurements reveal the conductivities of 1 and 2 are 10?7 and 10?8 Scm?1, respectively and they exhibit thermally activated temperature depen- dence, which may be attributed to semiconductors.
基金funded by a Medical Research Council(UK)Experimental Medicine grant[MR/M006646/1]
文摘Autosomal recessive mutations in the PARK7 gene,which encodes for the protein DJ-1,result in a loss of function and are a cause of familial Parkinson’s disease(PD),while increased wild-type DJ-1protein levels are associated with some forms of cancer.Several functions of DJ-1 have been described,with the greatest evidence indicating that DJ-1 is a redox-sensitive protein involved in the regulation of oxidative stress and cell survival.
基金This work was supported financially by the NNSF of China(No.20171044,20273074 and 20391001)NSF of Fujian Province(E03 10029).
文摘A novel dimeric complex [Ru3 (μ3-O)(μ-CH3COO)(CO)]2(μ-dppf)(μ-odppf)(dppf = 1, 1'-bis(diphenylphosphio)ferrocene, odppf = 1, 1'-bis(oxodiphenylphosphoranyl)ferrocene) (1) of oxo-centered triruthenium-aectate cluster units was synthesized and characterized by X-ray crystallography. Compound 1 exhibits a cyclic structure formed by linkages of two triruthenium cluster units Ru3 (μ3-O)(μ-CH3COO)6(CO) through dppf and odppf ligands, respectively. The diameter of the molecular loop is ca. 1.0 nm.
基金Supported by the National Natural Science Foundation of China(No.20872108)
文摘The reaction of a ruthenium carbide complex RuCl2(C:)(PCy3)2 with [H(Et2O)x]+[BF4]- at a molar ratio of 1:2 produced a two-core ruthenium carbene complex, {[RuCl(=CHPCy3)(PCy3)]2(μ-Cl)3}+·[BF4]-, in the form of a yellow-green crystalline solid in a yield of 94%. This two-core ruthenium complex is a selective catalyst for ring closing metathesis of unsubstituted terminal dienes. More importantly, no isomerized byproduct was observed for N-substrates when the two-core ruthenium complex was used as the catalyst at an elevated temperature(137 °C), indicating that the complex is a chemo-selective catalyst for ring closing metathesis reactions.
基金the National Natural Science Foundation of China(Nos.20343005,20473107,20673130,and 20773147)the Hong Kong PolyU Joint Supervision Scheme(A-PH78) for financial support.
文摘A series of chiral secondary alcohols were easily prepared by means of asymmetric hydrogenation of prochiral aromatic ketones using a new((Rax)-BuP)/(R,R)-DPEN-Ru(Ⅱ) complex catalyst system.The hydrogenation of 2-methylacetophenone in n-butanol (t-BuOK/Ru =45.6/1,S/C = 500,20 atm.of H2,20℃,48 h) afforded(S)-1-(2'-methylphenyl)ethanol in 92%ee and〉99% conversion.