Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electroche...Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electrochemical reduction of HCO_(3)^(-)is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface.Herein,we adopt a comprehensive strategy to tackle this challenge,i.e.,cascade of in situ chemical conversion of HCO_(3)^(-)to CO_(2) and CO_(2) electrochemical reduction in a flow cell.With a tailored Ni-N-S single atom catalyst(SACs),where sulfur(S)atoms located in the second shell of Ni center,the CO_(2)electroreduction(CO_(2)ER)to CO is boosted.The experimental results and density functional theory(DFT)calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom,thereby stabilizing^(*)H over N and boosting the first proton coupled electron transfer process of CO_(2)ER,i.e.,^(*)+e^(-)+^(*)H+^(*)CO_(2)→^(*)COOH.As a result,the obtained catalyst exhibits a high faradaic efficiency(FE_(CO)~98%)and a low overpotential of 425 mV for CO production as well as a superior turnover frequency(TOF)of 47397 h^(-1),outcompeting most of the reported Ni SACs.More importantly,an extremely high FECOof 90%is achieved at 50 mA cm^(-2)in the designed membrane electrode assembly(MEA)cascade electrolyzer fed with liquid bicarbonate.This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO_(2)ER,but also provides an alternative and feasible strategy to realize the electrochemical conversion of HCO_(3)^(-)to high-value chemicals.展开更多
The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their perform...The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.展开更多
Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This...Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.展开更多
NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and t...NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.展开更多
The reduction smelting process for cobalt recovery from converter slag of the Chambishi Copper Smelter in Zambia was studied. The effects of reducing agent dosage, smelting temperature and time and the addition of sla...The reduction smelting process for cobalt recovery from converter slag of the Chambishi Copper Smelter in Zambia was studied. The effects of reducing agent dosage, smelting temperature and time and the addition of slag modifiers (CaO and TiO2) were investigated. In addition, the depleted slag and cobalt-bearing alloy were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Under the determined conditions, 94.02% Co, 95.76% Cu and less than 18% Fe in the converter slag were recovered. It was found that the main phases of depleted slag were fayalite and hercynite; and the cobalt-bearing alloy mainly contained metallic copper, Fe-Co-Cu alloys and a small amount of sulfide.展开更多
The molten slag in smelting reduction with iron bath has peculiar behaviour for its high FeO concentration. Slag foaming is effected by the concentration and reduction rate of FeO, basicity of slag and temperature. Ad...The molten slag in smelting reduction with iron bath has peculiar behaviour for its high FeO concentration. Slag foaming is effected by the concentration and reduction rate of FeO, basicity of slag and temperature. Addition of granulated coke can greatly decrease slag foaming extent in the process of smelting reduction with iron bath. The anti-foaming capacity of granulated coke is the best when the ratio of coke used for coke layer to total coke used in smelting reduction is controlled at about 20%.展开更多
A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced ti...A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced time of 5 h,and CaO content of 2.5wt%,a DRI with a metallization rate of 96.5%was obtained through coal-based direct reduction of ultra-high-grade iron concentrate.Then,an HPI with a Fe purity of 99.95%and C,Si,Mn,and P contents as low as 0.0008wt%,0.0006wt%,0.0014wt%,and 0.0015wt%,respectively,was prepared by smelting separation of the DRI using a smelting temperature of 1625°C,smelting time of 45 min,and CaO content of 9.3wt%.The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard.An HPI with a Fe purity of 99.98wt%can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost.The proposed process shows a promising prospect for application in the future.展开更多
A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/w(SiO_2) ratio, anthracite ratio, and reduction temperature an...A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/w(SiO_2) ratio, anthracite ratio, and reduction temperature and time on the recovery and size of iron nuggets and on the Al_2O_3 grade of the calcium aluminate slag were investigated through thermodynamic calculations and experiments. The optimized process conditions were the bauxite/anthracite/slaked lime weight ratio of 100:16.17:59.37, reduction temperature of 1450°C and reduction time of 20 min. Under these conditions, high-quality iron nuggets and calcium aluminate slag were obtained. The largest size and the highest recovery rate of iron nuggets were 11.42 mm and 92.79wt%, respectively. The calcium aluminate slag mainly comprised Ca_2 SiO_4 and Ca_(12)Al_(14)O_(33), with small amounts of Fe Al_2O_4, CaAl_2O_4, and Ca_2Al_2SiO_7.展开更多
In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-ph...In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-phosphorus iron and ilmenite. The effect, which is related to basicity, reduction temperature, carbon-oxygen ratio and time of ventilated oxygen to iron recovery, dephosphorization rate, content of iron, phosphorus, sulfur and titanium in pig iron, was investigated in the experiment. The results show that an ideal outcome can be gained in condition of 6:4 ration on Mengqiao concentrate and Huimin iron ore, temperature of 1 500℃, basicity of 1.3, 1.0 on molar ration of carbon to oxygen, time of 10 min on blowing-oxygen. The outcome is that there is no foamy slag in generation, a good separation of slag and iron, iron recovery with 91.41%, content of phosphorus with 0.27% and tilanium content less than 0.001%, The atmosphere of strong oxidizing in the upper of reduction container and high potential of oxygen in the composition of slag in this technique bring phosphorus, titanium and silicon into slag, which ensures less content of impurity in pig iron.展开更多
Reduction rate of ferrous oxide in smelting reduction with iron bath has been studied. The main affecting factors on reduction rate, such as composition of the melt, temperature of molten bath, basicity of slag...Reduction rate of ferrous oxide in smelting reduction with iron bath has been studied. The main affecting factors on reduction rate, such as composition of the melt, temperature of molten bath, basicity of slag and the way of supplying carbonaceous materials have also been investigated.展开更多
The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of c...The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.展开更多
For slag system of CaO-SiO_2-Al_2O_3-MgO-V_2O_5,the time of V reduction to appro ch the dynamical equilibrium is about 6 h,the equilibrium time is not evidently influenced by the ratio CaO/SiO_2 and shortens with the ...For slag system of CaO-SiO_2-Al_2O_3-MgO-V_2O_5,the time of V reduction to appro ch the dynamical equilibrium is about 6 h,the equilibrium time is not evidently influenced by the ratio CaO/SiO_2 and shortens with the increase of temperature.It the ratio of the weight of slag to that of iron bath is 1/2,CaO/SiO_2 0.8 and tomperature 1773 K.the maxium distribution coefficeent of V reduction is 32.4 and maxium recovery of V is 96.1%.展开更多
A comparative study was made of the reduction kinetics for high temperature smelting of vadium-titanium-containing magnetite,together with Hainan iron ore,using iron bath method.Three peaks were revealed on the reduct...A comparative study was made of the reduction kinetics for high temperature smelting of vadium-titanium-containing magnetite,together with Hainan iron ore,using iron bath method.Three peaks were revealed on the reduction rate curves for the magnetite,while one peak only for Hainan ore.Under the same conditions,the smelting reduction rate of the magnetite was found to be lower than that of Hainan ore.The rate increases evidently with the increase of the bath volume.The expressions of smelting reduction rate were suggested for the reduction with and without iron bath respectively.展开更多
Bath smelting reduction for recovering zinc from EAF (Electric Arc Furnace) dust has been investigated in the laboratory. A degree of zinc volatilization of more than 99% was obtained from the process. Temperature has...Bath smelting reduction for recovering zinc from EAF (Electric Arc Furnace) dust has been investigated in the laboratory. A degree of zinc volatilization of more than 99% was obtained from the process. Temperature has a clear influence on the reduction rate of ZnO in slag. The reduction rate of (ZnO) by [C] is the first order with respect to the content of ZnO in the slag. The apparent activation energy of the (ZnO) reduction reaction is 312 kJ/mol at 1300-1500℃.展开更多
基金financially supported by the Natural Science Foundation of Shandong Province (ZR2020QB132,ZR2020MB025)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL202108SIC)the Taishan Scholar Program of Shandong Province (ts201712046)。
文摘Combination of CO_(2) capture using inorganic alkali with subsequently electrochemical conversion of the resultant HCO_(3)^(-)to high-value chemicals is a promising route of low cost and high efficiency.The electrochemical reduction of HCO_(3)^(-)is challenging due to the inaccessible of negatively charged molecular groups to the electrode surface.Herein,we adopt a comprehensive strategy to tackle this challenge,i.e.,cascade of in situ chemical conversion of HCO_(3)^(-)to CO_(2) and CO_(2) electrochemical reduction in a flow cell.With a tailored Ni-N-S single atom catalyst(SACs),where sulfur(S)atoms located in the second shell of Ni center,the CO_(2)electroreduction(CO_(2)ER)to CO is boosted.The experimental results and density functional theory(DFT)calculations reveal that the introduction of S increases the p electron density of N atoms near Ni atom,thereby stabilizing^(*)H over N and boosting the first proton coupled electron transfer process of CO_(2)ER,i.e.,^(*)+e^(-)+^(*)H+^(*)CO_(2)→^(*)COOH.As a result,the obtained catalyst exhibits a high faradaic efficiency(FE_(CO)~98%)and a low overpotential of 425 mV for CO production as well as a superior turnover frequency(TOF)of 47397 h^(-1),outcompeting most of the reported Ni SACs.More importantly,an extremely high FECOof 90%is achieved at 50 mA cm^(-2)in the designed membrane electrode assembly(MEA)cascade electrolyzer fed with liquid bicarbonate.This work not only highlights the significant role of the second coordination on the first coordination shell of the central metal for CO_(2)ER,but also provides an alternative and feasible strategy to realize the electrochemical conversion of HCO_(3)^(-)to high-value chemicals.
基金financially National Natural Science Foundation of China (22288102, 22172134, U1932201, U2032202)Science and Technology Planning Project of Fujian Province (2022H0002)support from the EPSRC (EP/W03784X/1)。
文摘The efficacy of the oxygen reduction reaction(ORR) in fuel cells can be significantly enhanced by optimizing cobalt-based catalysts,which provide a more stable alternative to iron-based catalysts.However,their performance is often impeded by weak adsorption of oxygen species,leading to a 2e^(-)pathway that negatively affects fuel cell discharge efficiency.Here,we engineered a high-density cobalt active center catalyst,coordinated with nitrogen and sulfur atoms on a porous carbon substrate.Both experimental and theoretical analyses highlighted the role of sulfur atoms as electron donors,disrupting the charge symmetry of the original Co active center and promoting enhanced interaction with Co 3d orbitals.This modification improves the adsorption of oxygen and reaction intermediates during ORR,significantly reducing the production of hydrogen peroxide(H_(2)O_(2)).Remarkably,the optimized catalyst demonstrated superior fuel cell performance,with peak power densities of 1.32 W cm^(-2) in oxygen and 0.61 W cm^(-2) in air environments,respectively.A significant decrease in H_(2)O_(2) by-product accumulation was observed during the reaction process,reducing catalyst and membrane damage and consequently improving fuel cell durability.This study emphasizes the critical role of coordination symmetry in Co/N/C catalysts and proposes an effective strategy to enhance fuel cell performance.
基金financially supported by the National Natural Science Foundation of China(Nos.52174217 and 52304354)the China Postdoctoral Science Foundation(No.2020M682495)。
文摘Separated preparation of prealloys and amorphous alloys results in severe solidification-remelting and beneficial element removal-readdition contradictions,which markedly increase energy consumption and emissions.This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore(HPIO)and apatite.First,the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated,and the element content in reduced alloys was theoretically determined.The phase and structural evolutions,as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca_(3)(PO_(4))_(2),were then experimentally verified.The addition of Ca_(3)(PO_(4))_(2)in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe_(3)P and Fe_(2)P phases.The content of P and C elements in the range of 1.52 wt% -14.63 wt% and 0.62 wt% -2.47 wt%,respectively,can be well tailored by adding 0-50 g Ca_(3)(PO_(4))_(2)and controlling the C/O mole ratio of 0.8-1.1,which is highly consistent with the calculated results.These FePC alloys were then successfully formed into amorphous ribbons and rods.The energy consumption of the proposed strategy was estimated to be 2.00×10^(8) kJ/t,which is reduced by 30% when compared with the conventional production process.These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.
基金Project(JS-211)supported by the State-Owned Enterprise Electric Vehicle Industry Alliance,China
文摘NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.
基金Project(2008BAB34B01-1)supported by the National Key Technology R&D Program of China
文摘The reduction smelting process for cobalt recovery from converter slag of the Chambishi Copper Smelter in Zambia was studied. The effects of reducing agent dosage, smelting temperature and time and the addition of slag modifiers (CaO and TiO2) were investigated. In addition, the depleted slag and cobalt-bearing alloy were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Under the determined conditions, 94.02% Co, 95.76% Cu and less than 18% Fe in the converter slag were recovered. It was found that the main phases of depleted slag were fayalite and hercynite; and the cobalt-bearing alloy mainly contained metallic copper, Fe-Co-Cu alloys and a small amount of sulfide.
文摘The molten slag in smelting reduction with iron bath has peculiar behaviour for its high FeO concentration. Slag foaming is effected by the concentration and reduction rate of FeO, basicity of slag and temperature. Addition of granulated coke can greatly decrease slag foaming extent in the process of smelting reduction with iron bath. The anti-foaming capacity of granulated coke is the best when the ratio of coke used for coke layer to total coke used in smelting reduction is controlled at about 20%.
基金the National Natural Science Foundation of China(No.51904063)the Fundamental Research Funds for the Central Universities,China(Nos.N172503016,N172502005,and N172506011)the China Postdoctoral Science Foundation(No.2018M640259).
文摘A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced time of 5 h,and CaO content of 2.5wt%,a DRI with a metallization rate of 96.5%was obtained through coal-based direct reduction of ultra-high-grade iron concentrate.Then,an HPI with a Fe purity of 99.95%and C,Si,Mn,and P contents as low as 0.0008wt%,0.0006wt%,0.0014wt%,and 0.0015wt%,respectively,was prepared by smelting separation of the DRI using a smelting temperature of 1625°C,smelting time of 45 min,and CaO content of 9.3wt%.The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard.An HPI with a Fe purity of 99.98wt%can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost.The proposed process shows a promising prospect for application in the future.
基金financially supported by the International Scientific and Technological Cooperation and Exchange Projects of China (No. 2013DFG50640)
文摘A high-temperature reduction and smelting process was used to recover iron and calcium aluminate slag from high-ferrous bauxite. The effects of w(CaO)/w(SiO_2) ratio, anthracite ratio, and reduction temperature and time on the recovery and size of iron nuggets and on the Al_2O_3 grade of the calcium aluminate slag were investigated through thermodynamic calculations and experiments. The optimized process conditions were the bauxite/anthracite/slaked lime weight ratio of 100:16.17:59.37, reduction temperature of 1450°C and reduction time of 20 min. Under these conditions, high-quality iron nuggets and calcium aluminate slag were obtained. The largest size and the highest recovery rate of iron nuggets were 11.42 mm and 92.79wt%, respectively. The calcium aluminate slag mainly comprised Ca_2 SiO_4 and Ca_(12)Al_(14)O_(33), with small amounts of Fe Al_2O_4, CaAl_2O_4, and Ca_2Al_2SiO_7.
基金Project(51064015) supported by the National Natural Science Foundation of ChinaProject(ZD2010001) supported by the Key Project of Yunnan Province Education of China
文摘In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-phosphorus iron and ilmenite. The effect, which is related to basicity, reduction temperature, carbon-oxygen ratio and time of ventilated oxygen to iron recovery, dephosphorization rate, content of iron, phosphorus, sulfur and titanium in pig iron, was investigated in the experiment. The results show that an ideal outcome can be gained in condition of 6:4 ration on Mengqiao concentrate and Huimin iron ore, temperature of 1 500℃, basicity of 1.3, 1.0 on molar ration of carbon to oxygen, time of 10 min on blowing-oxygen. The outcome is that there is no foamy slag in generation, a good separation of slag and iron, iron recovery with 91.41%, content of phosphorus with 0.27% and tilanium content less than 0.001%, The atmosphere of strong oxidizing in the upper of reduction container and high potential of oxygen in the composition of slag in this technique bring phosphorus, titanium and silicon into slag, which ensures less content of impurity in pig iron.
文摘Reduction rate of ferrous oxide in smelting reduction with iron bath has been studied. The main affecting factors on reduction rate, such as composition of the melt, temperature of molten bath, basicity of slag and the way of supplying carbonaceous materials have also been investigated.
基金supported by the National Natural Science Foundation of China(No.52274349)the National Key Basic Research and Development Program of China(No.2022YFC3900801)+1 种基金the Fujian Province University-Industry Cooperation Research Program,China(No.2023H6007)the Fujian Province Natural Science Foundation,China(No.2023J05024).
文摘The precipitation of Fe_(3)O_(4)particles and the accompanied formation of Fe_(3)O_(4)-wrapped copper structure are the main obstacles to copper recovery from the molten slag during the pyrometallurgical smelting of copper concentrates.Herein,the commercial powdery pyrite or anthracite is replaced with pyrite-anthracite pellets as the reductants to remove a large amount of Fe_(3)O_(4)particles in the molten slag,resulting in a deep fracture in the Fe_(3)O_(4)-wrapped copper microstructure and the full exposure of the copper matte cores.When 1wt%composite pellet is used as the reductant,the copper matte droplets are enlarged greatly from 25μm to a size observable by the naked eye,with the copper content being enriched remarkably from 1.2wt%to 4.5wt%.Density functional theory calculation results imply that the formation of the Fe_(3)O_(4)-wrapped copper structure is due to the preferential adhesion of Cu_(2)S on the Fe_(3)O_(4)particles.X-ray photoelectron spectroscopy,Fourier transform infrared spectrometer(FTIR),and Raman spectroscopy results all reveal that the high-efficiency conver-sion of Fe_(3)O_(4)to FeO can decrease the volume fraction of the solid phase and promote the depolymerization of silicate network structure.As a consequence,the settling of copper matte droplets is enhanced due to the lowered slag viscosity,contributing to the high efficiency of copper-slag separation for copper recovery.The results provide new insights into the enhanced in-situ enrichment of copper from mol-ten slag.
文摘For slag system of CaO-SiO_2-Al_2O_3-MgO-V_2O_5,the time of V reduction to appro ch the dynamical equilibrium is about 6 h,the equilibrium time is not evidently influenced by the ratio CaO/SiO_2 and shortens with the increase of temperature.It the ratio of the weight of slag to that of iron bath is 1/2,CaO/SiO_2 0.8 and tomperature 1773 K.the maxium distribution coefficeent of V reduction is 32.4 and maxium recovery of V is 96.1%.
文摘A comparative study was made of the reduction kinetics for high temperature smelting of vadium-titanium-containing magnetite,together with Hainan iron ore,using iron bath method.Three peaks were revealed on the reduction rate curves for the magnetite,while one peak only for Hainan ore.Under the same conditions,the smelting reduction rate of the magnetite was found to be lower than that of Hainan ore.The rate increases evidently with the increase of the bath volume.The expressions of smelting reduction rate were suggested for the reduction with and without iron bath respectively.
文摘Bath smelting reduction for recovering zinc from EAF (Electric Arc Furnace) dust has been investigated in the laboratory. A degree of zinc volatilization of more than 99% was obtained from the process. Temperature has a clear influence on the reduction rate of ZnO in slag. The reduction rate of (ZnO) by [C] is the first order with respect to the content of ZnO in the slag. The apparent activation energy of the (ZnO) reduction reaction is 312 kJ/mol at 1300-1500℃.