期刊文献+
共找到866篇文章
< 1 2 44 >
每页显示 20 50 100
A Review of Influencing Factors of Damping Properties of High Manganese Steel
1
作者 Chao Chen Jiale Wang +2 位作者 Jianyu Jiao Fengmei Bai Guangwen Zheng 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期52-64,共13页
High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Re... High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel. . 展开更多
关键词 high manganese steel Damping Properties Alloying Elements Heat Treatment DEFORMATION
下载PDF
WELDING BETWEEN HIGH MANGANESE STEEL AND HIGH CARBON STEEL 被引量:2
2
作者 M. H. Guo,D. C. Shao, Z. G Dong and J. C Yang National Key Laboratory Advanced Welding Production Technology, Harbin institute of Technology, Harbin 150001, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期112-116,共5页
Manuscript received 30 July 1999 Abstract The shielded metal arc welding (SMAW) of a manganese steel part as a crossing of railway track to a carbon steel part as the rails of the railroad is the welding of dissimil... Manuscript received 30 July 1999 Abstract The shielded metal arc welding (SMAW) of a manganese steel part as a crossing of railway track to a carbon steel part as the rails of the railroad is the welding of dissimilar steel. It are was known that it is not possible to the the rail of railroad directly to the cross- ing of railway track made from a steel containing about 14% of manganese (wt. ) because of so many differences between the two kinds of steels such as composition, microstructure,mechanical properties and weldability.A method was used to solve the problem by presetting an intermediate layer on each side of the joint and other special procedures were used.The result of test indicated that a good weld joint was obtained. 展开更多
关键词 high manganese steel high carbon steel welding rail intermedinate layer
下载PDF
NUMERICAL SIMULATION OF TEMPERATURE FIELD ON FLASH BUTT WELDING FOR HIGH MANGANESE STEELS 被引量:2
3
作者 B.D. Yu W.D. Song F. C. Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第4期547-551,共5页
An axial symmetry finite element model coupled with electricity-thermal effect was developed to study the temperature field distribution in process of the flash butt welding (FBW) of frog highmanganese steel. The in... An axial symmetry finite element model coupled with electricity-thermal effect was developed to study the temperature field distribution in process of the flash butt welding (FBW) of frog highmanganese steel. The influence of temperature dependent material properties and the contact resistance were taken into account in FEM 'simulation. Meanwhile, the lost materials due to .splutter was resolved by using birth and death element. The result of analyzing data shows that the moddel in the FBW flashing is reasonable and feasible, and can exactly simulate the temperature field distribution. The modeling provides reference for analysis of welding technologies on the temperature field of high-manganese steel in FBW. 展开更多
关键词 flash butt welding (FBW) numerical simulation high manganese steel temperature field
下载PDF
Influence of Impact Energy on Impact Corrosion-abrasion of High Manganese Steel 被引量:1
4
作者 杜晓东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第3期412-416,共5页
The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the i... The impact corrosion-abrasion properties and mechanism of high manganese steel were investigated under different impact energies. The result shows that the wearability of the steel decreases with the increase of the impact energy. The dominant failure mechanism at a lower impact energy is the rupture of extrusion edge along root and a slight shallow-layer spalling. It transforms to shallow-layer fatigue flaking along with serious corrosion-abrasion when the impact energy is increased, and finally changes to bulk flaking of hardened laver caused by deeo work-hardening and heaw corrosion-abrasion. 展开更多
关键词 wear characteristics abrasion mechanism impact energy high manganese steel impact corrosion-abrasion
下载PDF
Effect of RE-Modifier on Microstructure and Mechanical Property of High-Carbon Medium-Manganese Steel 被引量:1
5
作者 SONG Yan-pei XIE Jing-pei +1 位作者 ZHU Yao-min WANG Ai-qin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2002年第1期36-39,共4页
The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline ... The effect of RE-modifier on the microstructure and mechanical properties of high carbon-medium manganese steel has been investigated in present work.The results showed that the RE-modifier can refine the crystalline grain of high-carbon medium-manganese steel.The shape and distribution of carbides are improved and the columnar grains and phosphide in grain boundary are eliminated.Consequently,the impact toughness of the steel is increased by more than one time,compared with no addition of RE-modifier. 展开更多
关键词 RE-modifier high-carbon medium-manganese steel microstructure and property
下载PDF
Hot workability of high manganese transformation induced plasticity steel
6
作者 ZHANG Weina,LIU Zhenyu and WANG Guodong State Key Laboratory of Rolling and Automation,Northeastern University, Shenyang 110004,Liaoning,China 《Baosteel Technical Research》 CAS 2010年第S1期32-,共1页
The hot deformation behavior and microstructure evolution of high manganese transformation induced plasticity steel(Fe - 20Mn - 3Si - 3Al) were investigated by using hot compression test in a temperature range from 80... The hot deformation behavior and microstructure evolution of high manganese transformation induced plasticity steel(Fe - 20Mn - 3Si - 3Al) were investigated by using hot compression test in a temperature range from 800℃to 1 050℃and strain rate ranging from 0.01 s^(-1) to 5.0 s^(-1).The effects of temperature,strain rate,and true strain on the flow behavior and microstructures of high manganese transformation induced plasticity steel were discussed.The results show that the dynamic recrystallization occurs only at higher temperature and lower strain rate.Hot deformation behaviors of high manganese transformation induced plasticity steel were sensitive to temperature and strain rate.The apparent stress exponent and the apparent activation energy of the investigated steel were about 4.280 and 463.791 kJ/mol, respectively.The apparent activation energy of the high manganese transformation induced plasticity steel was approached to the austenitic stainless steel(400 -500 kJ/mol).The hot working equation is obtained. Hot deformation peak stress increased with increasing of the value of lnZ.Peak stress and InZ exhibits a linear variation,the linear correlation coefficient was 0.988 9.The results show that the dynamic recrystallization was prone to occur when lnZ≤43.842 26 and Z≤1.098×10^(19),and better hot deformation properties would be obtained under this condition. 展开更多
关键词 high manganese transformation induced plasticity steel hot deformation MICROsTRUCTURE dynamic recrystallization Z parameter
下载PDF
Hot deformation behavior and hot-metal-gas-forming process of V micro-alloyed high manganese steel
7
作者 Yong-gang Yang Wang-nan Zuo +4 位作者 Mei Xu Chang-hui Yuan Jiang Chang Lei Qi Zhen-li Mi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2271-2280,共10页
The hot deformation behavior of a newly designed V micro-alloyed high manganese steel(HMnS)was investigated in order to guide the development of the hot-metal-gas-forming process.Single-pass hot compression experiment... The hot deformation behavior of a newly designed V micro-alloyed high manganese steel(HMnS)was investigated in order to guide the development of the hot-metal-gas-forming process.Single-pass hot compression experiments were conducted in the temperature range of 950–1100°C and the strain rate range of 0.05–10 s^(−1),and the stress–strain curves and the corresponding softening mechanism of the V micro-alloyed HMnS were analyzed.Results show that two types of stress–strain curves,representing the work hardening(WH)-dynamic recovery(DRV)-dynamic recrystallization(DRX)mechanism and the WH–DRV mechanism,respectively,occur during the deformation process.Moreover,the WH–DRV–DRX mechanism gradually transforms into the WH–DRV mechanism with the increasing strain rate and decreasing deformation temperature.Two types of constitutive models considering the softening mechanism difference were established and verified by additional hot-deformation experiments.Hot processing map of the HMnS was established and correlated well with the microstructure evolution result.Based on the constitutive models and processing map,the optimal processing parameter range and flow stress of HMnS for the hot-metal-gas-forming were determined. 展开更多
关键词 high manganese steel Hot-metal-gas-forming Deformation behavior Microstructure softening mechanism
原文传递
High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels 被引量:2
8
作者 Weijun HUI Yihong NIE +2 位作者 Han DONG Yuqing WENG Chunxu WANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第5期787-792,共6页
The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the hi... The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior. For AtSI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curve displays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 pro. In the case of internal inclusion-induced fractures at cycles beyond about 1×10^6 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increase with increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×10^6. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study. 展开更多
关键词 high-cycle fatigue Ultrahigh strength steel INCLUsION s-N curve Fish-eye fracture
下载PDF
Effect of Plastic Deformation and H_2S on Dynamic Fracture Toughness of High Strength Casing Steel 被引量:1
9
作者 曾德智 ZHANG Naiyan +3 位作者 TIAN Gang HU Junying ZHANG Zhi SHI Taihe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期397-403,共7页
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)... The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly. 展开更多
关键词 sour gas fields high strength casing C110 steel plastic deformation H2s fracture toughness
下载PDF
The Phenomenon of High Hardness Values on the S-Phase Layer of Austenitic Stainless Steel via Screen Plasma Nitriding Process 被引量:2
10
作者 Sang-Gweon Kim Kook-Hyun Yeo +2 位作者 Yong-Ki Cho Jae-Hoon Lee Masahiro Okumiya 《Advances in Materials Physics and Chemistry》 2018年第6期257-268,共12页
The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excel... The purpose of this study is to improve the surface properties of austenitic stainless steel using the double-folded electrode screen plasma nitriding (SPN) process. In general, the S-phase is well-known for its excellent properties such as improved hardness and wear resistance along with sustained corrosion resistance. The concentrated nitrogen via SPN process was injected to form S-phase with time at 713 K. This study was carried out under the conditions of 44 at% of nitrogen injection, which was higher than 25 at% known as the condition of no precipitation of S-phase formed by the SPN process, and 20 K higher than the maximum temperature without precipitation phase. The hardness analysis of stainless steel sample treated by the SPN process at 713 K showed a much higher value than the typical nitriding hardness at a depth of lower nitrogen than the maximum nitrogen concentration. The SPN 20 hr treated specimen showed the average value of 2339 HV while 40 hr showed the average value of 2215 HV. The result is attributed to the concentrated nitrogen formed in the SPN process reacting with the alloying elements contained in the base material to form fine precipitates, thus producing a synergy effect of the extreme hardening effect;that is, the movement of precipitates and dislocations due to the GP-zone (Guinier-Preston zone). 展开更多
关键词 Double-Folded Electrode Austenitic stainless steel (Ass) sCREEN Plasma NITRIDING (sPN) PROCEss s-PHAsE Corrosion Resistance high Hardness
下载PDF
半自磨机用Fe-1.1C-20Mn-2.5Cr-0.9Si-0.25Ti-1.0V-0.15Nb衬板的失效分析
11
作者 王栋栋 王彬 汪军 《热处理技术与装备》 2024年第2期37-40,共4页
针对某选矿厂∅10.37 m×5.49 m半自磨机高锰钢衬板在使用过程中出现断裂的情况,采用X射线荧光光谱仪(XRF)、扫描电子显微镜(SEM)和电子试验机(AGS-X 100KNx)等设备对衬板的化学成分、微观组织和拉伸断口形貌进行分析。结果表明衬板... 针对某选矿厂∅10.37 m×5.49 m半自磨机高锰钢衬板在使用过程中出现断裂的情况,采用X射线荧光光谱仪(XRF)、扫描电子显微镜(SEM)和电子试验机(AGS-X 100KNx)等设备对衬板的化学成分、微观组织和拉伸断口形貌进行分析。结果表明衬板中存在疏松以及晶界处大量未溶块状碳化物和网状碳化物是导致半自磨机衬板早期断裂的主要原因。 展开更多
关键词 高锰钢 疏松 碳化物 断裂
下载PDF
基于LSTM算法的表面粗糙度监测系统
12
作者 庄曙东 史柏迪 +1 位作者 陈威 陈天翔 《机械设计与制造》 北大核心 2023年第4期80-84,共5页
加工过程中为避免因机床异常振动造成的零件表面粗糙度突变,提出一种基于LSTM算法的表面粗糙度监控模型,通过对主轴与台面安装传感器,实现机床振动量的实时采集并作为时序变量输入模型。在M-V5CN组合机床铣削U71Mn高锰钢样本集上证明该... 加工过程中为避免因机床异常振动造成的零件表面粗糙度突变,提出一种基于LSTM算法的表面粗糙度监控模型,通过对主轴与台面安装传感器,实现机床振动量的实时采集并作为时序变量输入模型。在M-V5CN组合机床铣削U71Mn高锰钢样本集上证明该模型可有效训练,且RMSprop优化器相对于Adam与SGD算法优化器可更有效降低模型泛化性误差。最终在嵌入式开发板中预测最大绝对误差低至0.01μm,平均误差为0.005μm可在加工中对表面粗糙度进行有效监控。 展开更多
关键词 表面粗糙度 刀具振动 长短期记忆神经网络 U71Mn高锰钢 嵌入式开发
下载PDF
Effect of Al content on the reaction between Fe-10Mn-xAl(x=0.035wt%,0.5wt%,1wt%,and 2wt%)steel and CaO-SiO_(2)-Al_(2)O_(3)-MgO slag 被引量:4
13
作者 Huixiang Yu Dexin Yang +2 位作者 Jiaming Zhang Guangyuan Qiu Ni Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期256-262,共7页
The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(... The effect of Al content(0.035 wt%,0.5 wt%,1 wt%,and 2 wt%)on the composition change of steel and slag as well as inclusion transformation of high manganese steel after it has equilibrated with Ca O-Si O_(2)-Al_(2)O_(3)-Mg O slag was studied using the method of slag/steel reaction.The experimental results showed that as the initial content of Al increased from 0.035 wt%to 2 wt%,Al gradually replaced Mn to react with Si O_(2)in slag to avoid the loss of Mn due to the reaction;this process caused both Al_(2)O_(3)in slag and Si in steel to increase while Si O_(2)and Mn O in slag to reduce.In addition,the type of inclusions also evolved as the initial Al content increased.The evolution route of inclusions was Mn O→Mn O-Al_(2)O_(3)-Mg O→Mg O→Mn O-Ca O-Al_(2)O_(3)-Mg O and Mn O-Ca O-Mg O.The shape of inclusions evolved from spherical to irregular,became faceted,and finally transformed to spherical.The average size of inclusions presented a trend that was increasing first and then decreasing.The transformation mechanism of inclusions was explored.As the initial content of Al increased,Mg and Ca were reduced from top slag into molten steel in sequence,which consequently caused the transformation of inclusions. 展开更多
关键词 medium/high manganese steel Al content steel composition slag composition non-metallic inclusion slag/steel reaction
下载PDF
Influence of carbon content on microstructure and mechanical properties of Mn13Cr2 and Mn18Cr2 cast steels 被引量:1
14
作者 Lu Dingshan Liu Zhongyi Li Wei 《China Foundry》 SCIE CAS 2014年第3期173-178,共6页
In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study resul... In this paper, a comparison study was carried out to investigate the influence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study results indicate that both steels' water-quenched microstructures are composed of austenite and a small amount of carbide. The study also found that, when the carbon contents are the same, there is less carbide in Mn18Cr2 steel than in Mn13Cr2 steel. Therefore, the hardness of Mn18Cr2 steel is lower than that of Mn13Cr2 steel but the impact toughness of Mn18Cr2 steel is higher than that of Mn13Cr2 steel. With increasing the carbon content, the hardness increases and the impact toughness decreases in these two kinds of steels, and the impact toughness of Mn18Cr2 steel substantially exceeds that of Mn13Cr2 steel. Therefore, the water-quenched Mn18Cr2 steel with high carbon content could be applied to relatively high impact abrasive working conditions, while the as-cast Mn18Cr2 steel could be only used under working conditions of relatively low impact abrasive load due to lower impact toughness. 展开更多
关键词 high manganese steel carbon CONTENT As-CAsT water-quenched microstructure HARDNEss impact TOUGHNEss
下载PDF
Influence of carbon content on wear resistance and wear mechanism of Mn13Cr2 and Mn18Cr2 cast steels 被引量:1
15
作者 Ding-shan Lu Zhong-yi Liu +3 位作者 Wei Li Zhao Liao Hui Tian Jian-zhong Xian 《China Foundry》 SCIE CAS 2015年第1期39-47,共9页
By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to st... By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents(1.25 wt.%, 1.35 wt.%, and 1.45 wt.%) on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition. 展开更多
关键词 high manganese steel carbon content water-quenched hardness-toughness combination WEAR-REsIsTANCE WEAR mechanism
下载PDF
Influence of welding parameters on nitrogen content in welding metal of 32Mn-7Cr-1Mo-0.3N austenitic steel 被引量:1
16
作者 付瑞东 邱亮 +2 位作者 王存宇 王青峰 郑炀曾 《Journal of Central South University of Technology》 2005年第1期22-26,共5页
The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volu... The transfer behavior of nitrogen into the welding metal during gas tungsten arc welding process of 32Mn-7Cr-1Mo-0.3N steel was investigated. The effects of gas tungsten arc welding process variables, such as the volume fraction of nitrogen in shielding gas, arc holding time and arc current on the nitrogen content in the welding metal were also evaluated. The results show that the volume fraction of nitrogen in gas mixture plays a major role in controlling the nitrogen content in the welding metal. It seems that there exhibits a maximum nitrogen content (depending) on the arc current and arc holding time. The optimum volume fraction of nitrogen in shielding gas is 4% or so. The role of gas tungsten arc welding processing parameters in controlling the transfer of nitrogen is further (confirmed) by the experimental results of gas tungsten arc welding process with feeding metal. 展开更多
关键词 nitrogen transfer welding parameter high manganese austenitic steel DEPOsIT gas tungsten arc welding
下载PDF
Characterization of Tensile Strain Hardening Behaviors for 32Mn-7Cr-1Mo-0.3N Cryogenic Austenitic Steel
17
作者 Liang QIU Ruidong FU Cunyu WANG Yangzeng ZHENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期629-633,共5页
The strain hardening behaviors of 32Mn-TCr-1Mo-0.3N austenitic steel were characterized by a simple and effective method. The results show that Hollomon relationship is not applicable during total uniform deformation ... The strain hardening behaviors of 32Mn-TCr-1Mo-0.3N austenitic steel were characterized by a simple and effective method. The results show that Hollomon relationship is not applicable during total uniform deformation stage. The flow equation was proposed, Inσ=αexp(lnε/b)+c. The variation rates of strain hardening exponents with true strain at 77 K are obviously higher than that at other temperatures and the value of d^2σ/dε^2 becomes positive during high strain stage. The characters of this variation are principal reasons for increasing elongation at 77 K. The forming of mechanical twin as well as ε-martensite leads to a high elongation at 77 K. 展开更多
关键词 high manganese autenitic steel Nitrogen strengthening strain hardening exponent strain hardening rate Deformation structure
下载PDF
Casting properties of ASTM A128 Gr.E1 steel modified with Mn-alloying and titanium ladle treatment
18
作者 Uğur Gürol Erdal Karadeniz +1 位作者 OzanÇoban Süleyman Can Kurnaz 《China Foundry》 SCIE CAS 2021年第3期199-206,共8页
This work aims to produce a high manganese steel with more refined austenite grains and better wear resistance without sacrificing the toughness and tensile properties by Mn alloying and Ti ladle treatment in comparis... This work aims to produce a high manganese steel with more refined austenite grains and better wear resistance without sacrificing the toughness and tensile properties by Mn alloying and Ti ladle treatment in comparision to ASTM A128 Gr.E1 steel (1.0C-13Mn) that is mostly used in the mining industry.The 1.0C-17Mn-xTi alloys (x=0,0.05 and 0.1,in wt.%) were prepared.A relationship was established between the microstructures and mechanical properties of the as-cast and solution annealed alloys.Increasing Ti content increases the stable Ti(CN) phase on and beside the grain boundaries and decreases up to 37% the austenite grain size of the as-cast alloy with 0.10wt.% Ti.Correspondingly,after solution annealed,optimized titanium content (0.05wt.%) results in significant improvements in wear resistance,hardness,elongation,yield and tensile strengths by 44%,31%,30%,8% and 12%,respectively,except 9% decrease in impact toughness compared to ASTM A 128 Gr.E1 steel without modification.These results show that 1.0C-17Mn-0.05Ti alloy can be used for parts exposed to high load wear and applied in conditions where relatively high tensile properties with sufficent ductility is needed. 展开更多
关键词 high manganese steel hadfield steel ladle treatment grain refinement microstructure mechanical properties
下载PDF
Effect of deformation twinning on the evolution of texture in TWIP steels during cold-rolling
19
作者 ZHONG Yong1,2),WANG Li 1,2),LIANG Gaofei1,2) and JIANG Yunzhe1,3) 1) Auto Steel Division,Research Institute,Baoshan Iron & Steel Co.,Ltd.,Shanghai 201900,China 2) State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel),Shanghai 201900,China 3) School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China 《Baosteel Technical Research》 CAS 2012年第1期7-11,共5页
Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions ... Texture evolution of high-manganese twining-induced plasticity (TWIP) steels (Fe-16Mn-0.6C) during cold-rolling is studied by means of quantitative orientation distribution function (ODF)analysis.Thickness reductions of the specimens during cold-rolling are 10%,20%,30%,50% and 65%,respectively.Evolution of texture is of the Brass type,which is typical for low-stacking fault energy (SFE) materials.The contribution of deformation twinning to the development of texture is clearly illustrated by the monotonic increase of the twinned Cu component.In the present study,the deformation twinning was identified as significantly contributing to deformation up to the maximum reduction applied.These results are useful for the prediction and control of the texture in TWIP steels. 展开更多
关键词 high-manganese steel deformation twin sFE TEXTURE COLD-ROLLING
下载PDF
激光送丝熔覆高锰钢涂层的显微组织及超声滚压硬化机理
20
作者 杨海峰 孙昕辉 +3 位作者 袁冬青 赵恩兰 刘送永 彭玉兴 《中国机械工程》 EI CAS CSCD 北大核心 2024年第11期2043-2053,2081,共12页
为了维持高锰钢部件优异的形变硬化能力,提出了高锰钢涂层的激光送丝熔覆技术。使用激光送丝熔覆技术在Mn13钢板上制备了高锰钢涂层,并通过超声滚压技术对熔覆层表面进行形变硬化处理。分析了超声滚压前后高锰钢熔覆层的显微组织、相组... 为了维持高锰钢部件优异的形变硬化能力,提出了高锰钢涂层的激光送丝熔覆技术。使用激光送丝熔覆技术在Mn13钢板上制备了高锰钢涂层,并通过超声滚压技术对熔覆层表面进行形变硬化处理。分析了超声滚压前后高锰钢熔覆层的显微组织、相组成和力学性能,揭示了高锰钢熔覆层的超声滚压硬化机理。研究结果表明,激光送丝熔覆高锰钢涂层的显微组织为枝晶结构,且在枝晶间存在Mn、C元素的成分偏析;超声滚压过程中未出现相变,超声滚压后涂层的硬度、耐磨性均大幅提高;初始高锰钢涂层内部存在的C、Mn的枝晶偏析、位错和孪晶在超声滚压过程中严重阻碍了位错的运动,从而增大了位错的密度;由于高锰钢的孪晶诱导塑性变形效应,超声滚压后涂层内部会产生大量的形变孪晶,形变孪晶之间的相互作用进一步增强了高锰钢熔覆层的形变硬化能力。激光送丝熔覆为大型高锰钢部件表面的高性能修复提供了技术基础。 展开更多
关键词 激光送丝熔覆 高锰钢 显微组织 超声滚压 形变硬化机理
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部