Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug de...Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug development from the marine resources is higher than the industry average.It is a feasible strategy to conduct the discovery of druglead compounds based on marine chemical ecology by fully exploiting the pharmacological potential of marine chemical defense matters.In the search for bioactive MNPs,our group has constructed a biological resources library including more than 1500 strains of fungi.Focusing on the strategy of Blue Drug Library,we have discovered a series of novel MNPs with abundant biological functions.Highly efficient and scalable total synthesis of(+)-aniduquinolone A(44)and pesimquinolone I(48)have been completed,which will facilitate access to sufficient quantities of candidates for in vivo pharmacological and toxicological studies.As a nucleoprotein(NP)inhibitor,QLA(75)possesses significant anti-influenza A virus(IAV)activities both in vitro and in vivo.CHNQD-00803(76)is a potent and selective AMP-activated kinase(AMPK)activator that can effectively inhibit metabolic disorders and metabolic dysfunction-associated steatohepatitis(MASH)progression.Moreover,we identified two new candidate molecules with potent anti-hepatocellular carcinoma effects.Particularly,as a natural guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases(Arf-GEFs)inhibitor prodrug,CHNQD-01255(78)is qualified to be developed as a targeted candidate anticancer drug,which may be promising to apply for cancer immunotherapy.Hence,it is evident that MNPs play an important role in drug development.展开更多
Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,t...Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,two identical microbial electrolysis cell(MEC)based biosensors were inoculated with marine sediment and operated at two different anodic potentials,namely-300 mV and+250 mV relative to Ag/AgCl.The MEC biosensor operated under positive anodic potential conditions had electrochemically active microbial communities on the anode,including members of the Shewanellaceae,Pseudoalteromonadaceae,and Clostridiaceae families.However,the strictly anaerobic members of the Desulfuromonadaceae,Desulfobulbaceae and Desulfobacteraceae families were found only in the negative anodic potential MEC biosensor.The positive anodic potential MEC biosensor showed several other advantages as well,such as faster start-up,significantly higher maximum current production,fivefold improvement in the AOC detection limit,and tolerance of low dissolved oxygen,compared to those obtained from the negative anodic potential MEC biosensor.The developed positive anodic potential MEC biosensor can thus be used as a real-time and inexpensive detector of AOC concentrations in high saline and low DO seawater.展开更多
A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some c...A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some candidate genes accounting for variation in growth-related traits through genotype-phenotype association analyses,seldom of them have verified the functions of these putative,growth-related genes beyond the genomic level due to the difficulty of culturing commercial bivalves under laboratory conditions.Fortunately,dwarf surf clam Mulinia lateralis can serve as a model organism for studying marine bivalves given its short generation time,the feasibility of being grown under experimental conditions and the availability of genetic and biological information.Using dwarf surf clam as a model bivalve,we characterize E2F3,a gene that has been found to account for variation in growth in scallops by a previous genome-wide association study,and verify its function in growth regulation through RNA interference(RNAi)experiments.For the first time,E2F3 in dwarf surf clam,which is termed as MulE2F3,is characterized.The results reveal that dwarf surf clams with MulE2F3 knocked down exhibit a reduction in both shell size and soft-tissue weight,indicating the functions of MulE2F3 in positively regulating bivalve growth.More importantly,we demonstrate how dwarf surf clam can be used as a model organism to investigate gene functions in commercial bivalves,shedding light on genetic causes for variation in growth to enhance the efficiency of bivalve farming.展开更多
Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linka...Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linkages,the importance of marine economic net-work research is beginning to emerge.The construction of the marine economic network in China’s coastal areas is necessary to change the flow of land and sea resources and optimize regional marine economic development.Employing data from headquarters and branches of sea-related A-share listed enterprises to construct the marine economic network in China,we use social network analysis(SNA)to discuss the characteristics of its evolution as of 2010,2015,and 2020 and its governance.The following results were obtained.1)In terms of topological characteristics,the scale of the marine economic network in China’s coastal areas has accelerated and expan-ded,and the connections have become increasingly close;thus,this development has complex network characteristics.2)In terms of spatial structure,the intensity of the connection fluctuates and does not form stable development support;the group structure gradually becomes clear,but the overall pattern is fragmented;there are spatial differences in marine economic agglomeration radiation;the radi-ation effect of the eastern marine economic circle is obvious;and the polarization effect of northern and southern marine economic circles is significant.On this basis,we construct a framework for the governance of a marine economic network with the market,the government,and industry as the three governing bodies.By clarifying the driving factors and building objectives of marine economic network construction,this study aims to foster the high-quality development of China’s marine economy.展开更多
The pervasive presence of microplastics in marine environments has raised significant concerns. This review addresses the pressing issue of microplastic pollution in marine ecosystems and its potential implications fo...The pervasive presence of microplastics in marine environments has raised significant concerns. This review addresses the pressing issue of microplastic pollution in marine ecosystems and its potential implications for both the environment and human health. It outlines the current state of microplastic occurrence, distribution, and extraction methods within marine organisms. Microplastics have emerged as a significant environmental concern due to their harmful effects on ecosystems and their potential human health risks. These particles infiltrate marine environments through runoff and atmospheric deposition, ultimately contaminating beaches and posing threats to marine life. Despite the gravity of this issue, there has been limited research on the presence and distribution of microplastics in marine organisms. This review aims to bridge this knowledge gap by comprehensively examining the occurrence, distribution, and various extraction methods used to detect microplastics in marine organisms. It emphasizes the urgent need for targeted measures to manage microplastic pollution, highlights the significant role of human activities in contributing to this problem, and underscores the importance of reducing human-induced pollution to safeguard marine ecosystems. While this paper contributes to the understanding of microplastic pollution in marine environments and underscores the critical importance of taking action to protect marine organisms and preserve our oceans for future generations, it also emphasizes that, in effectively tackling the microplastic problem, a well-coordinated approach is essential, involving research initiatives, policy adjustments, public involvement, and innovative technologies. Crucially, prompt and resolute responses must exist to counteract the escalating peril posed by microplastics to the oceans and the global environment.展开更多
The marine environment can be extremely dangerous,and the harm caused by marine organisms when they contact the human body can be especially harmful,even deadly.Contact includes stings,bites,wounds,and consumption as ...The marine environment can be extremely dangerous,and the harm caused by marine organisms when they contact the human body can be especially harmful,even deadly.Contact includes stings,bites,wounds,and consumption as food.In this article,the characteristics of the common marine biological injuries are summarized,the major marine organisms causing damage in China’s marine waters are described,and injury prevention and treatment methods are discussed.展开更多
The sustainable regeneration of the biggest fishery resource in the Zhoushan Sea area of China has been adversely affected in recent years. Wastewater discharged into the marine ecosystem is the main source of pollut...The sustainable regeneration of the biggest fishery resource in the Zhoushan Sea area of China has been adversely affected in recent years. Wastewater discharged into the marine ecosystem is the main source of pollution. Affected organisms such as hairtail prawn, jellyfish, crab, laver and kelp were monitored, and the contributions and fluxes of three sort of pollutants(oils, Cr and phenol) from the expansion of rural enterprises in the Yangtze River valley, the Qiantang River valley, the Ningbo coastal area and the Zhoushan islands were calculated. More than 16 chemical pollutants were jointly responsible for the decrease in the yield and quality of marine organisms. Furthermore, combined contamination effects and their joint toxicity differed between summer and winter, because they were varied with different temperature, salinity, pH and E h.展开更多
Global warming has become a global challenge having dire consequences on different aspects of the environment due to the melting of glaciers, excess carbon dioxide (CO<sub>2</sub>), and excess warming of w...Global warming has become a global challenge having dire consequences on different aspects of the environment due to the melting of glaciers, excess carbon dioxide (CO<sub>2</sub>), and excess warming of water bodies among others. At a faster pace recently, climate change is affecting the marine environment, causing numerous alterations. Here, we address its consequences and the numerous alterations, which are more vital for researchers and global agencies to advocate more on why it’s essential to lessen the impact of climate change. Our review showed that the impacts of climate change are articulated at several stages of the marine ecosystem where it affects the inhabitants and their habitats. In response to climate change (ocean warming) marine species shift their latitudinal range to find suitable conditions leading to the redistribution of species. In addition, we found that growth reduction, sub-optimal behaviors, and reduced immune-competence of marine organisms, are as a result of thermal stress due to climate change. Also, the periodic changes in temperature above or below the optimum have a meditative reproductive effect on marine species, including fish. Finally, we discovered that due to higher water temperatures, several diseases showcase greater virulence in the sense that the marine species become less resistant to these diseases due to stress, increased virulence stimuli, or increased transmission.展开更多
The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for eva...The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.展开更多
The fifth intergovernmental negotiations on marine BBNJ(Biodiversity beyond Areas of National Jurisdiction)concluded in August 2022,in which there are still major differences regarding access to marine genetic resourc...The fifth intergovernmental negotiations on marine BBNJ(Biodiversity beyond Areas of National Jurisdiction)concluded in August 2022,in which there are still major differences regarding access to marine genetic resources,management,and technology transfer.China’s participation in the development of marine genetic resources in ABNJ(areas beyond national jurisdiction)has many dilemmas,which are linked to the difficulties faced in advancing the BBNJ negotiations.The following countermeasures are proposed at the institutional and practical levels respectively:clarifying the legal attributes and applicability of the principles of marine genetic resources;establishing mechanisms for access,management,environmental impact assessment and benefit sharing of marine genetic resources;and using the“Blue Partnership”to build a governance mechanism for marine genetic resources to achieve mutual benefits.展开更多
The composition of chlorophenols in marine organisms from the southern coast of Hangzhou Bay, China, was analyzed and the health risks posed to humans assessed. A total of 19 chlorophenols from 16 types of marine orga...The composition of chlorophenols in marine organisms from the southern coast of Hangzhou Bay, China, was analyzed and the health risks posed to humans assessed. A total of 19 chlorophenols from 16 types of marine organism were analyzed across nine survey sections in Hangzhou Bay. The chlorophenols were analyzed by gas chromatography-mass spectrometry using a DB-5MS quartz capillary column. The concentrations of monochlorophenol, dichlorophenol, trichlorophenol, tetrachlorophenol, and pentachlorophenol ranged from below the detection limit(ND) to 132 μg/kg, ND–51.0 μg/kg, ND–42.5 μg/kg, ND–69.0 μg/kg, and ND–9.06 μg/kg, respectively. Additionally, concentration differences between each type of chlorophenol were not significant( P >0.05). However, significant differences were found between monochlorophenol( F =8.13, P <0.01) and total chlorophenol(F =5.19, P <0.01) concentrations. As the noncarcinogenic risk indices were <0.1(10-5 –10-2) for all of the organisms, no high risk was posed by 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, and pentachlorophenol to humans consuming marine organisms from the study area. Furthermore, the carcinogenic risks posed by 2,4,6-trichlorophenol and pentachlorophenol were lower than limits set by the International Commission on Radiological Protection and the US Environmental Protection Agency. However, the noncarcinogenic and carcinogenic risks posed by chlorophenols in marine organisms from four of the survey sections(Sizaopu, Niluoshan, Longshan Town and Xinhong zha) were higher than the other survey sections.展开更多
The PI3K/Akt/mTOR signaling pathway is one of the most frequently dysregulated pathways in cancer.Targeting the PI3K-mediated pathway has been an important strategy for developing novel anticancer agents.In the past d...The PI3K/Akt/mTOR signaling pathway is one of the most frequently dysregulated pathways in cancer.Targeting the PI3K-mediated pathway has been an important strategy for developing novel anticancer agents.In the past decades,more than 40 inhibitors of the PI3K/Akt/mTOR pathway have been developed at different clinical stages.Temsirolimus,everolimus,idelalisib,and copanlisib have been approved for clinical use by the Food and Drug Administration of the United States(FDA).However,the toxic-ity and drug resistance limit their efficiency in the treatment.Novel compounds with greater potency and selectivity,as well as im-proved therapeutic indices with reduced toxicity,are clearly required.Over the past three decades,a lot of bioactive ingredients with anticancer effects by affecting the PI3K-mediated pathways have been found from marine organisms.In the present mini-review,anticancer compounds from marine source that target the PI3K/Akt/mTOR signaling were reviewed.The molecular entities and their modes of action were presented.The marine compounds targeting special factors of the PI3K/Akt/mTOR were highlighted.展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
-Study on the effects of microorganism secretive membrane and covering layer of macrofouling organisms-Balanus reticulatus, Ostrea plicatula, Membranipora, Corophium and Algae on the corrosion of carbon steel and low-...-Study on the effects of microorganism secretive membrane and covering layer of macrofouling organisms-Balanus reticulatus, Ostrea plicatula, Membranipora, Corophium and Algae on the corrosion of carbon steel and low-alloy steel by the determination of natural corrosive potentials, linear polarization and the polarization curver of dynamic potential scanning through an electrochemical equipment.The results show that the microorganism secretion membrane formed on sample surface has some protective role, during the initial period of exposure (about ten days). Then protective role decreases and corrosive rate increases with the lapse of immersion time. The protective role of some macrofouling organisms is shown in order as follows: Corophium> Balanus reticulatus>Algae>Membranipora>Ostrea plicatula.展开更多
[Objective] The aim of this study is to identify a bacterial strain isolated from ocean water from the Yellow Sea.[Method]Using 16S rRNA technique,a strain from Yellow Sea was preliminarily identified and analyzed.[Re...[Objective] The aim of this study is to identify a bacterial strain isolated from ocean water from the Yellow Sea.[Method]Using 16S rRNA technique,a strain from Yellow Sea was preliminarily identified and analyzed.[Result]One 1 521 bp fragment of 16S rRNA was amplified from the strain HZBN43;homology analysis between the yielded sequence and the 16S rRNA sequences accessed in NCBI from other strains showed that HZBN43 belonged to Bacillus,and shared 99.79% homologue with the known species of Bacillus selenatarsenatis.[Conclusion]The sequence of strain HZBN43 was obtained.However,because of the incomplete sequence,the confidence level is just 46,so other corroborations are still required for grouping HZBN43 into an exact species.展开更多
This paper summarizes a nontoxic Anti-fouling coating utilizing capsaicin as an anti-fouling agent. The capsaicin constituent used in the coating has a rating from about 100 000 to about 1 500 000 Scoville Heat Units....This paper summarizes a nontoxic Anti-fouling coating utilizing capsaicin as an anti-fouling agent. The capsaicin constituent used in the coating has a rating from about 100 000 to about 1 500 000 Scoville Heat Units. The capsaicin is mixed with a silicon dioxide and then solubilized into a free-flowing homogeneous liquid oleoresin composition by adding a solvent to increase solubility and facilitate mixing. The oleoresin capsaicin liquid solution is mixed with a suitable corrosion resistant epoxy resin, which is then mixed with a hardening catalyst and applied to the surface to be treated.展开更多
The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar ...The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar distribution ranges and thicknesses,they exhibit substantially different exploration and development results.This work analyzed the nanopore structures of the shale reservoirs in this region.Pore development of 51 shale samples collected from various formations and locations was compared using the petromineralogical,geochemical,structural geological and reservoir geological methods.The results indicate that the reservoir space in these shales is dominated by organic pores and the total pore volume of micropores,mesopores,macropores in different tectonic areas and formations show different trends with the increase of TOC.It is suggested that organic pores of shale can be well preserved in areas with simple structure and suitable preservation conditions,and the shale with smaller maximum ancient burial depth and later hydrocarbongeneration-end-time is also more conducive to pore preservation.Organic pore evolution models are established,and they are as follows:①Organic matter pore development stage,②Early stage of organic matter pore destruction,and③late stage of organic matter pore destruction.The areas conducive to pore development are favorable for shale gas development.Research results can effectively guide the optimization and evaluation of favorable areas of shale gas.展开更多
基金supported by the Shandong Province Special Fund ‘Frontier Technology and Free Exploration’ from Laoshan Laboratory (No. 8-01)the National Natural Science Foundation of China (No. 42376116)+3 种基金the Special Funds of Shandong Province for Qingdao National Laboratory of Marine Science and Technology (No. 2022QN LM030003)the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University (No. CMEMR2023-B16)the National Key Research and Development Program of China (No. 2022YFC2601305)the Innovation Center for Academicians of Hainan Province, and the Fundamental Research Funds for the Central Universities (No. 202461059)
文摘Marine natural products(MNPs)are valuable resources for drug development.To date,17 drugs from marine sources are in clinical use,and 33 pharmaceutical compounds are in clinical trials.Presently the success of drug development from the marine resources is higher than the industry average.It is a feasible strategy to conduct the discovery of druglead compounds based on marine chemical ecology by fully exploiting the pharmacological potential of marine chemical defense matters.In the search for bioactive MNPs,our group has constructed a biological resources library including more than 1500 strains of fungi.Focusing on the strategy of Blue Drug Library,we have discovered a series of novel MNPs with abundant biological functions.Highly efficient and scalable total synthesis of(+)-aniduquinolone A(44)and pesimquinolone I(48)have been completed,which will facilitate access to sufficient quantities of candidates for in vivo pharmacological and toxicological studies.As a nucleoprotein(NP)inhibitor,QLA(75)possesses significant anti-influenza A virus(IAV)activities both in vitro and in vivo.CHNQD-00803(76)is a potent and selective AMP-activated kinase(AMPK)activator that can effectively inhibit metabolic disorders and metabolic dysfunction-associated steatohepatitis(MASH)progression.Moreover,we identified two new candidate molecules with potent anti-hepatocellular carcinoma effects.Particularly,as a natural guanine-nucleotide exchange factors for ADP-ribosylation factor GTPases(Arf-GEFs)inhibitor prodrug,CHNQD-01255(78)is qualified to be developed as a targeted candidate anticancer drug,which may be promising to apply for cancer immunotherapy.Hence,it is evident that MNPs play an important role in drug development.
基金Zhenjiang City Key R&D Plan Modern Agriculture Project(No.SH2021017)Zhenjiang“Jinshan Talents”Project 2021Jiangsu Province“Six Talent Peak”Program(No.XCL-111)。
文摘Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,two identical microbial electrolysis cell(MEC)based biosensors were inoculated with marine sediment and operated at two different anodic potentials,namely-300 mV and+250 mV relative to Ag/AgCl.The MEC biosensor operated under positive anodic potential conditions had electrochemically active microbial communities on the anode,including members of the Shewanellaceae,Pseudoalteromonadaceae,and Clostridiaceae families.However,the strictly anaerobic members of the Desulfuromonadaceae,Desulfobulbaceae and Desulfobacteraceae families were found only in the negative anodic potential MEC biosensor.The positive anodic potential MEC biosensor showed several other advantages as well,such as faster start-up,significantly higher maximum current production,fivefold improvement in the AOC detection limit,and tolerance of low dissolved oxygen,compared to those obtained from the negative anodic potential MEC biosensor.The developed positive anodic potential MEC biosensor can thus be used as a real-time and inexpensive detector of AOC concentrations in high saline and low DO seawater.
基金supported by the National Natural Science Foundation of China(No.U2106231)the National Key R&D Program of China(No.2022YFD2400303)the Key R&D Project of Shandong Province(No.2022 TZXD003).
文摘A better understanding of genetic bases of growth regulation is essential for bivalve breeding,which is helpful to improve the yield of the commercially important bivalves.While previous studies have identified some candidate genes accounting for variation in growth-related traits through genotype-phenotype association analyses,seldom of them have verified the functions of these putative,growth-related genes beyond the genomic level due to the difficulty of culturing commercial bivalves under laboratory conditions.Fortunately,dwarf surf clam Mulinia lateralis can serve as a model organism for studying marine bivalves given its short generation time,the feasibility of being grown under experimental conditions and the availability of genetic and biological information.Using dwarf surf clam as a model bivalve,we characterize E2F3,a gene that has been found to account for variation in growth in scallops by a previous genome-wide association study,and verify its function in growth regulation through RNA interference(RNAi)experiments.For the first time,E2F3 in dwarf surf clam,which is termed as MulE2F3,is characterized.The results reveal that dwarf surf clams with MulE2F3 knocked down exhibit a reduction in both shell size and soft-tissue weight,indicating the functions of MulE2F3 in positively regulating bivalve growth.More importantly,we demonstrate how dwarf surf clam can be used as a model organism to investigate gene functions in commercial bivalves,shedding light on genetic causes for variation in growth to enhance the efficiency of bivalve farming.
基金Under the auspices of the Key Research Base of Humanities and Social Sciences of the Ministry of Education of China(No.22JJD790029)。
文摘Data on discrete,isolated attributes of the marine economy are often used in traditional marine economic research.However,as the focus of urban research shifts from internal static attributes to external dynamic linkages,the importance of marine economic net-work research is beginning to emerge.The construction of the marine economic network in China’s coastal areas is necessary to change the flow of land and sea resources and optimize regional marine economic development.Employing data from headquarters and branches of sea-related A-share listed enterprises to construct the marine economic network in China,we use social network analysis(SNA)to discuss the characteristics of its evolution as of 2010,2015,and 2020 and its governance.The following results were obtained.1)In terms of topological characteristics,the scale of the marine economic network in China’s coastal areas has accelerated and expan-ded,and the connections have become increasingly close;thus,this development has complex network characteristics.2)In terms of spatial structure,the intensity of the connection fluctuates and does not form stable development support;the group structure gradually becomes clear,but the overall pattern is fragmented;there are spatial differences in marine economic agglomeration radiation;the radi-ation effect of the eastern marine economic circle is obvious;and the polarization effect of northern and southern marine economic circles is significant.On this basis,we construct a framework for the governance of a marine economic network with the market,the government,and industry as the three governing bodies.By clarifying the driving factors and building objectives of marine economic network construction,this study aims to foster the high-quality development of China’s marine economy.
文摘The pervasive presence of microplastics in marine environments has raised significant concerns. This review addresses the pressing issue of microplastic pollution in marine ecosystems and its potential implications for both the environment and human health. It outlines the current state of microplastic occurrence, distribution, and extraction methods within marine organisms. Microplastics have emerged as a significant environmental concern due to their harmful effects on ecosystems and their potential human health risks. These particles infiltrate marine environments through runoff and atmospheric deposition, ultimately contaminating beaches and posing threats to marine life. Despite the gravity of this issue, there has been limited research on the presence and distribution of microplastics in marine organisms. This review aims to bridge this knowledge gap by comprehensively examining the occurrence, distribution, and various extraction methods used to detect microplastics in marine organisms. It emphasizes the urgent need for targeted measures to manage microplastic pollution, highlights the significant role of human activities in contributing to this problem, and underscores the importance of reducing human-induced pollution to safeguard marine ecosystems. While this paper contributes to the understanding of microplastic pollution in marine environments and underscores the critical importance of taking action to protect marine organisms and preserve our oceans for future generations, it also emphasizes that, in effectively tackling the microplastic problem, a well-coordinated approach is essential, involving research initiatives, policy adjustments, public involvement, and innovative technologies. Crucially, prompt and resolute responses must exist to counteract the escalating peril posed by microplastics to the oceans and the global environment.
基金Supported by Scientific Research Project of Shanghai Municipal Health Commission,No.202140061.
文摘The marine environment can be extremely dangerous,and the harm caused by marine organisms when they contact the human body can be especially harmful,even deadly.Contact includes stings,bites,wounds,and consumption as food.In this article,the characteristics of the common marine biological injuries are summarized,the major marine organisms causing damage in China’s marine waters are described,and injury prevention and treatment methods are discussed.
文摘The sustainable regeneration of the biggest fishery resource in the Zhoushan Sea area of China has been adversely affected in recent years. Wastewater discharged into the marine ecosystem is the main source of pollution. Affected organisms such as hairtail prawn, jellyfish, crab, laver and kelp were monitored, and the contributions and fluxes of three sort of pollutants(oils, Cr and phenol) from the expansion of rural enterprises in the Yangtze River valley, the Qiantang River valley, the Ningbo coastal area and the Zhoushan islands were calculated. More than 16 chemical pollutants were jointly responsible for the decrease in the yield and quality of marine organisms. Furthermore, combined contamination effects and their joint toxicity differed between summer and winter, because they were varied with different temperature, salinity, pH and E h.
文摘Global warming has become a global challenge having dire consequences on different aspects of the environment due to the melting of glaciers, excess carbon dioxide (CO<sub>2</sub>), and excess warming of water bodies among others. At a faster pace recently, climate change is affecting the marine environment, causing numerous alterations. Here, we address its consequences and the numerous alterations, which are more vital for researchers and global agencies to advocate more on why it’s essential to lessen the impact of climate change. Our review showed that the impacts of climate change are articulated at several stages of the marine ecosystem where it affects the inhabitants and their habitats. In response to climate change (ocean warming) marine species shift their latitudinal range to find suitable conditions leading to the redistribution of species. In addition, we found that growth reduction, sub-optimal behaviors, and reduced immune-competence of marine organisms, are as a result of thermal stress due to climate change. Also, the periodic changes in temperature above or below the optimum have a meditative reproductive effect on marine species, including fish. Finally, we discovered that due to higher water temperatures, several diseases showcase greater virulence in the sense that the marine species become less resistant to these diseases due to stress, increased virulence stimuli, or increased transmission.
基金supported by the National Natural Science Foundation of China (Grant U19B6003-01-02,42102150,42372163)。
文摘The black shale of the Mesoproterozoic Cuizhuang Formation in the Changcheng System in Yongji city,North China Craton,is a potential source rock.Understanding the organic matter enrichment mechanism is crucial for evaluating source rock resources and understanding oil and gas accumulation mechanisms.In this study,we evaluated the sedimentary paleoenvironment and organic matter enrichment mechanisms of shale using thin section observations,mineral composition analysis,organic geochemistry,and elemental geochemistry.We found significant differences in the sedimentary paleoenvironment and organic matter enrichment mechanisms between the lower Cuizhuang Formation and the Beidajian Formation shale.The Cuizhuang Formation was deposited in a late-stage,restricted basin environment during the rift phase,and elemental and geochemical indicators showed that the Cuizhuang Formation was in a suboxic-anoxic water environment,that was influenced by a warm and humid paleoclimate and submarine hydrothermal activities,which promoted the accumulation of organic matter.However,the enrichment of organic matter in the Cuizhuang Formation was mainly controlled by redox conditions.The formation of suboxic-anoxic water environments may be closely related to the warm and humid paleoclimate and submarine hydrothermal activities.Warm conditions promote continental weathering and increase marine productivity,thereby consuming oxygen in the bottom water.Moreover,acidic hydrothermal activity also helps to establish an anoxic environment.Our results reveal the effects controlling various coupled mechanisms dominated by redox conditions,which may explain the development of source rocks in the Cuizhuang Formation.
文摘The fifth intergovernmental negotiations on marine BBNJ(Biodiversity beyond Areas of National Jurisdiction)concluded in August 2022,in which there are still major differences regarding access to marine genetic resources,management,and technology transfer.China’s participation in the development of marine genetic resources in ABNJ(areas beyond national jurisdiction)has many dilemmas,which are linked to the difficulties faced in advancing the BBNJ negotiations.The following countermeasures are proposed at the institutional and practical levels respectively:clarifying the legal attributes and applicability of the principles of marine genetic resources;establishing mechanisms for access,management,environmental impact assessment and benefit sharing of marine genetic resources;and using the“Blue Partnership”to build a governance mechanism for marine genetic resources to achieve mutual benefits.
基金Supported by the National Special Research Fund for Non-Profit Sector(Agriculture)(No.201303047)the Key Programs for Science and Technology Development of Ningbo,China(No.2013C11027)
文摘The composition of chlorophenols in marine organisms from the southern coast of Hangzhou Bay, China, was analyzed and the health risks posed to humans assessed. A total of 19 chlorophenols from 16 types of marine organism were analyzed across nine survey sections in Hangzhou Bay. The chlorophenols were analyzed by gas chromatography-mass spectrometry using a DB-5MS quartz capillary column. The concentrations of monochlorophenol, dichlorophenol, trichlorophenol, tetrachlorophenol, and pentachlorophenol ranged from below the detection limit(ND) to 132 μg/kg, ND–51.0 μg/kg, ND–42.5 μg/kg, ND–69.0 μg/kg, and ND–9.06 μg/kg, respectively. Additionally, concentration differences between each type of chlorophenol were not significant( P >0.05). However, significant differences were found between monochlorophenol( F =8.13, P <0.01) and total chlorophenol(F =5.19, P <0.01) concentrations. As the noncarcinogenic risk indices were <0.1(10-5 –10-2) for all of the organisms, no high risk was posed by 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2,4,5-trichlorophenol, 2,3,4,6-tetrachlorophenol, and pentachlorophenol to humans consuming marine organisms from the study area. Furthermore, the carcinogenic risks posed by 2,4,6-trichlorophenol and pentachlorophenol were lower than limits set by the International Commission on Radiological Protection and the US Environmental Protection Agency. However, the noncarcinogenic and carcinogenic risks posed by chlorophenols in marine organisms from four of the survey sections(Sizaopu, Niluoshan, Longshan Town and Xinhong zha) were higher than the other survey sections.
基金The study was supported by the National Natural Sci-ence Foundation of China(Nos.81573457 and 81773776)We are also grateful to the support from the Taishan Talents Project of Shandong Province and the Department of Science and Technology in Shandong Province of China(Nos.ZR2017MH117,2018YYSP025,and ZR2017MH 027)Department of Science and Technology of Si-chuan Province,China(Nos.2017HH0104 and 2019YFS 0116).
文摘The PI3K/Akt/mTOR signaling pathway is one of the most frequently dysregulated pathways in cancer.Targeting the PI3K-mediated pathway has been an important strategy for developing novel anticancer agents.In the past decades,more than 40 inhibitors of the PI3K/Akt/mTOR pathway have been developed at different clinical stages.Temsirolimus,everolimus,idelalisib,and copanlisib have been approved for clinical use by the Food and Drug Administration of the United States(FDA).However,the toxic-ity and drug resistance limit their efficiency in the treatment.Novel compounds with greater potency and selectivity,as well as im-proved therapeutic indices with reduced toxicity,are clearly required.Over the past three decades,a lot of bioactive ingredients with anticancer effects by affecting the PI3K-mediated pathways have been found from marine organisms.In the present mini-review,anticancer compounds from marine source that target the PI3K/Akt/mTOR signaling were reviewed.The molecular entities and their modes of action were presented.The marine compounds targeting special factors of the PI3K/Akt/mTOR were highlighted.
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
文摘-Study on the effects of microorganism secretive membrane and covering layer of macrofouling organisms-Balanus reticulatus, Ostrea plicatula, Membranipora, Corophium and Algae on the corrosion of carbon steel and low-alloy steel by the determination of natural corrosive potentials, linear polarization and the polarization curver of dynamic potential scanning through an electrochemical equipment.The results show that the microorganism secretion membrane formed on sample surface has some protective role, during the initial period of exposure (about ten days). Then protective role decreases and corrosive rate increases with the lapse of immersion time. The protective role of some macrofouling organisms is shown in order as follows: Corophium> Balanus reticulatus>Algae>Membranipora>Ostrea plicatula.
基金Supported by the fund"The Documentation Concordancy and Sharing of Germplasm Resources of Marine Microorganism Resources at Offshore China"from Science and Technology Ministry(2005DKA21209)~~
文摘[Objective] The aim of this study is to identify a bacterial strain isolated from ocean water from the Yellow Sea.[Method]Using 16S rRNA technique,a strain from Yellow Sea was preliminarily identified and analyzed.[Result]One 1 521 bp fragment of 16S rRNA was amplified from the strain HZBN43;homology analysis between the yielded sequence and the 16S rRNA sequences accessed in NCBI from other strains showed that HZBN43 belonged to Bacillus,and shared 99.79% homologue with the known species of Bacillus selenatarsenatis.[Conclusion]The sequence of strain HZBN43 was obtained.However,because of the incomplete sequence,the confidence level is just 46,so other corroborations are still required for grouping HZBN43 into an exact species.
文摘This paper summarizes a nontoxic Anti-fouling coating utilizing capsaicin as an anti-fouling agent. The capsaicin constituent used in the coating has a rating from about 100 000 to about 1 500 000 Scoville Heat Units. The capsaicin is mixed with a silicon dioxide and then solubilized into a free-flowing homogeneous liquid oleoresin composition by adding a solvent to increase solubility and facilitate mixing. The oleoresin capsaicin liquid solution is mixed with a suitable corrosion resistant epoxy resin, which is then mixed with a hardening catalyst and applied to the surface to be treated.
基金supported by the National Science and Technology Major Project(Grant No.2017ZX05035)
文摘The Upper Ordovician Wufeng-Lower Silurian Longmaxi and the Lower Cambrian Qiongzhusi shales are the major targets for shale gas exploration and development in China.Although the two organic-rich shales share similar distribution ranges and thicknesses,they exhibit substantially different exploration and development results.This work analyzed the nanopore structures of the shale reservoirs in this region.Pore development of 51 shale samples collected from various formations and locations was compared using the petromineralogical,geochemical,structural geological and reservoir geological methods.The results indicate that the reservoir space in these shales is dominated by organic pores and the total pore volume of micropores,mesopores,macropores in different tectonic areas and formations show different trends with the increase of TOC.It is suggested that organic pores of shale can be well preserved in areas with simple structure and suitable preservation conditions,and the shale with smaller maximum ancient burial depth and later hydrocarbongeneration-end-time is also more conducive to pore preservation.Organic pore evolution models are established,and they are as follows:①Organic matter pore development stage,②Early stage of organic matter pore destruction,and③late stage of organic matter pore destruction.The areas conducive to pore development are favorable for shale gas development.Research results can effectively guide the optimization and evaluation of favorable areas of shale gas.