Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination...Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.展开更多
Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the m...Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.展开更多
CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyf...CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.展开更多
Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In...Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.展开更多
Objective:To investigate the neuroprotective effect of C-phycocyanin in a mouse model of rotenone-induced Parkinson’s disease.Methods:C-phycocyanin(50 mg/kg,i.p.,daily)was administered to rotenone(30 mg/kg,p.o.,daily...Objective:To investigate the neuroprotective effect of C-phycocyanin in a mouse model of rotenone-induced Parkinson’s disease.Methods:C-phycocyanin(50 mg/kg,i.p.,daily)was administered to rotenone(30 mg/kg,p.o.,daily)treated mice for 28 days.Behavioral studies(Y-maze,rotarod,round beam walk,and wire-hang tests)were carried out to assess neurobehavioral deficits.Glutathione and malondialdehyde were determined in both serum and striatal tissue.Molecular proteins(AKT,AMPK,NF-κB,BDNF,and alpha-synuclein)in the striatum were estimated using ELISA.Histopathological analyses(hematoxylin and eosin stainning as well as Nissl staining)were carried out to assess structural abnormalities in the striatum.Results:C-phycocyanin significantly increased BDNF levels and decreased alpha-synuclein levels.It also slightly upregulated AMPK and AKT levels without significant difference compared with the rotenone group.Additionally,rotenone-induced elevated oxidative stress and structural abnormalities in the striatum were markedly mitigated by C-phycocyanin.Conclusions:C-phycocyanin might have potential neuroprotective effects against Parkinson’s disease.Further studies are warranted to verify its efficacy and to understand the molecular mechanisms behind the neuroprotective effects of C-phycocyanin in Parkinson’s disease.展开更多
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,...Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,including cardiovascular diseases,osteoporosis,cancer,diabetes,and neurodegeneration.Aging is considered the major risk factor for Parkinson’s and Alzheimer’s disease develops.Likewise,diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders.Currently,no treatment can effectively reverse these neurodegenerative pathologies.However,some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes.In the previous framework,Vanadium species have demonstrated a notable antidiabetic effect.Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome.The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms.This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain,constituting a therapeutic alternative for aging and neurodegenerative diseases.展开更多
In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,p...In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,postural instability,and gait instability are the predominant clinical symptoms.The two main types of PD are sporadic and familial,with sporadic PD being the more prevalent of the two.The environment,genetics,mitochondrial dysfunction,oxidative stress,inflammation,protein aggregation and misfolding,loss of trophic factors,cell death,and gut microbiota may all have a role in the etiology of PD.PD is inversely connected with other cancers and positively correlated with COVID-19,diabetes mellitus(DM),melanoma,and ischemic heart disease(IHD)risk.Delaying disease progression,managing motor and non-motor symptoms,and avoiding and controlling dysfunction in the middle and later phases of the disease are the key areas of research and development for its therapy.Presently,the development and progression of PD can be slowed down by using conventional pharmacology,natural items,and innovative technology.This article reviews the pathogenesis of PD,its correlations with other non-genetic diseases,and the research progress of drugs and technologies for alleviating PD.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects a...Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects and potential for dependency. This study investigates the effects of a natural supplement combination of Ginkgo Biloba and Acai Extract on cognitive symptoms in a 77-year-old male with PD. The participant underwent a three-month supplementation regimen, with cognitive function assessed using the Montreal Cognitive Assessment (MoCA) test before and after the intervention. The results indicated an improvement in cognitive scores, suggesting that the combination of Ginkgo Biloba and Acai Extract may offer a promising alternative or adjunct to conventional PD treatments. This study highlights the potential of natural supplements in managing PD symptoms and calls for further research with larger sample sizes to confirm these findings. Human data was performed in accordance with the Declaration of Helsinki by the Roxbury District IRB Board (IRB Number: IRB00011767).展开更多
基金the financial support of the National Key R&D Program of China(No.2019YFC1806000)the Huazhong University of Science and Technology(No.3004013118)+2 种基金support from the National Natural Science Foundation of China(No.51903099)Huazhong University of Science and Technology(No.3004013134)the 100 Talents Program of the Hubei Provincial Government.Z.D.thanks the Postdoctoral Science Foundation of China(No.0106013063).
文摘Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.
基金supported by the Key Science and Technology Research of Henan Province,No.222102310351(to JW)Luoyang 2022 Medical and Health Guiding Science and Technology Plan Project,No.2022057Y(to JY)Henan Medical Science and Technology Research Program Province-Ministry Co-sponsorship,No.SBGJ202002099(to JY)。
文摘Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.
基金supported by the National Natural Science Foundation of China(21978092)Chenguang Program by Educational Administration of Shanghai(21CGA35)Yangfan Program by Scientifical Administration of Shanghai(22YF1410300).
文摘CO_(2) is an important component in the acid gas and it is necessary to study the effect of CO_(2) presence on the oxy-fuel combustion of H_(2)S with particular focus on the formation of carbonyl sulfide(COS).The oxyfuel combustion of acid gas was conducted in a coaxial jet double channel burner.The distribution of flame temperature and products under stoichiometric condition along axial(R=0.0)and radial at about 3.0 mm(R=0.75)were analyzed,respectively.The Chemkin-Pro software was used to analyze the rate of production(ROP)for gas products and the reaction pathway of acid gas combustion.Both experimental and simulation results showed that acid gas combustion experienced the H2S chemical decomposition,H_(2)S oxidation and accompanied by H_(2) oxidation.The CO_(2) presence reduced the peak flame temperature and triggered the formation of COS in the flame area.COS formation at R=0.0 was mainly through the reaction of CO_(2) and CO with sulfur species,whereas at R=0.75 it was through the reaction of CO with sulfur species.The ROP results indicated that H_(2) was mainly from H_(2)O decomposition in the H_(2)S oxidation stage,and COS was formed by the reaction of CO_(2) with H_(2)S.ROP and other detailed analysis further revealed the role of H,OH and SH radicals in each stage of H_(2)S conversion.This study revealed the COS formation mechanisms with CO_(2) presence in the oxy-fuel combustion of H_(2)S and could offer important insights for pollutant control.
基金supported by the National Natural Science Foundation of China(31772476 and 31911530077 to X.X.,81870991 and U1603281 to S.Q.)Guangdong Basic and Applied Basic Research Foundation(2023A1515010914 to X.X.)Natural Science Foundation of Guangdong Province(2022A1515010352 to S.Q.)。
文摘Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.
文摘Objective:To investigate the neuroprotective effect of C-phycocyanin in a mouse model of rotenone-induced Parkinson’s disease.Methods:C-phycocyanin(50 mg/kg,i.p.,daily)was administered to rotenone(30 mg/kg,p.o.,daily)treated mice for 28 days.Behavioral studies(Y-maze,rotarod,round beam walk,and wire-hang tests)were carried out to assess neurobehavioral deficits.Glutathione and malondialdehyde were determined in both serum and striatal tissue.Molecular proteins(AKT,AMPK,NF-κB,BDNF,and alpha-synuclein)in the striatum were estimated using ELISA.Histopathological analyses(hematoxylin and eosin stainning as well as Nissl staining)were carried out to assess structural abnormalities in the striatum.Results:C-phycocyanin significantly increased BDNF levels and decreased alpha-synuclein levels.It also slightly upregulated AMPK and AKT levels without significant difference compared with the rotenone group.Additionally,rotenone-induced elevated oxidative stress and structural abnormalities in the striatum were markedly mitigated by C-phycocyanin.Conclusions:C-phycocyanin might have potential neuroprotective effects against Parkinson’s disease.Further studies are warranted to verify its efficacy and to understand the molecular mechanisms behind the neuroprotective effects of C-phycocyanin in Parkinson’s disease.
基金funded by project from National Research System (CONACYT),Mexico (to SIGC)
文摘Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,including cardiovascular diseases,osteoporosis,cancer,diabetes,and neurodegeneration.Aging is considered the major risk factor for Parkinson’s and Alzheimer’s disease develops.Likewise,diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders.Currently,no treatment can effectively reverse these neurodegenerative pathologies.However,some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes.In the previous framework,Vanadium species have demonstrated a notable antidiabetic effect.Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome.The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms.This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain,constituting a therapeutic alternative for aging and neurodegenerative diseases.
基金supported partly by the National Natural Science Foundation of China(32161143021,81271410)Henan University Graduate《Talent Program》of Henan Province(SYLYC2023092)Henan Natural Science Foundation of China(182300410313).
文摘In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,postural instability,and gait instability are the predominant clinical symptoms.The two main types of PD are sporadic and familial,with sporadic PD being the more prevalent of the two.The environment,genetics,mitochondrial dysfunction,oxidative stress,inflammation,protein aggregation and misfolding,loss of trophic factors,cell death,and gut microbiota may all have a role in the etiology of PD.PD is inversely connected with other cancers and positively correlated with COVID-19,diabetes mellitus(DM),melanoma,and ischemic heart disease(IHD)risk.Delaying disease progression,managing motor and non-motor symptoms,and avoiding and controlling dysfunction in the middle and later phases of the disease are the key areas of research and development for its therapy.Presently,the development and progression of PD can be slowed down by using conventional pharmacology,natural items,and innovative technology.This article reviews the pathogenesis of PD,its correlations with other non-genetic diseases,and the research progress of drugs and technologies for alleviating PD.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
文摘Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms, including cognitive impairment. Current treatments often involve synthetic drugs with significant side effects and potential for dependency. This study investigates the effects of a natural supplement combination of Ginkgo Biloba and Acai Extract on cognitive symptoms in a 77-year-old male with PD. The participant underwent a three-month supplementation regimen, with cognitive function assessed using the Montreal Cognitive Assessment (MoCA) test before and after the intervention. The results indicated an improvement in cognitive scores, suggesting that the combination of Ginkgo Biloba and Acai Extract may offer a promising alternative or adjunct to conventional PD treatments. This study highlights the potential of natural supplements in managing PD symptoms and calls for further research with larger sample sizes to confirm these findings. Human data was performed in accordance with the Declaration of Helsinki by the Roxbury District IRB Board (IRB Number: IRB00011767).