Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights t...Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.展开更多
In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularl...In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.展开更多
SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study...SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study,the role of SIL1 in APP processing was explored both in vitro and in vivo.In the in vitro experiment,SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695.In the in vivo experiment,AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates.Western blotting(WB),immunohistochemistry,RNA sequencing(RNA-seq),and behavioral experiments were performed to evaluate the relevant parameters.Results indicated that SIL1 expression decreased in APP23/PS45 mice.Overexpression of SIL1 significantly decreased the protein levels of APP,presenilin-1(PS1),and C-terminal fragments(CTFs)of APP in vivo and in vitro.Conversely,knockdown of SIL1 increased the protein levels of APP,β-site APP cleavage enzyme 1(BACE1),PS1,and CTFs,as well as APP mRNA expression in 2EB2 cells.Furthermore,SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice.Importantly,Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice.These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.展开更多
To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the str...To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.展开更多
ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel p...ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel processing system with multi-channel synchronous sample,which is composed of multiple ADSP-TS101s,is designed and carried out.For the hardware design,field programmable gate array(FPGA)logical control is adopted for the design of multi-channel synchronous sample module and cluster/data flow associated pin connection mode is adopted for multiprocessing parallel processing configuration respectively.And the software is optimized by two kinds of communication ways:broadcast writing way through shared bus and point-to-point way through link ports.Through the whole system installation,connective debugging,and experiments in a lake,the results show that the real-time parallel processing system has good stability and real-time processing capability and meets the technical design requirements of real-time processing.展开更多
Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized...Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast.展开更多
A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine i...A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.展开更多
Implementation of artificial neural network(ANN)is very important to theoretical studyand applications of ANN.On the basis of studying existing methods,this paper concentrateson the DSP-based virtual implementation of...Implementation of artificial neural network(ANN)is very important to theoretical studyand applications of ANN.On the basis of studying existing methods,this paper concentrateson the DSP-based virtual implementation of ANN.A parallel processing system composed ofTMS320C30 has been designed and configured,which ean provide a peak speed as high as100 MFLOPS and a parallel efficiency of 90%(during the forward phase of BP),and can heused for sonar signal processing.Scalability of the system is also studied.展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
The new model for parallel repairable system is introduced, and it is based on the practice problems of maintenance and the idea of Ion-Channel modeling. In the new model, repair times that are sufficiently short (le...The new model for parallel repairable system is introduced, and it is based on the practice problems of maintenance and the idea of Ion-Channel modeling. In the new model, repair times that are sufficiently short (less than some critical value) do not result in system failure, and such a repair interval is omitted from the downtime record. Usually, the underlying process is Markov process if the durations of working and repair time have the negative-exponential distributions, but the new system has not the Markov properties, which is worth to study. The reliability indexes such as instantaneous availability and steady-state availabilities for the new system are given through probability analysis. A numerical example is given to illustrate the results.展开更多
In the construction of Metaverses,sensors that are referred to as the“bridge of information transmission”,play a key role.The functionality and efficiency of today’s sensors,which operate in a manner similar to phy...In the construction of Metaverses,sensors that are referred to as the“bridge of information transmission”,play a key role.The functionality and efficiency of today’s sensors,which operate in a manner similar to physical sensing,are frequently constrained by their hardware and software.In this research,we proposed the Parallel Sensing framework,which includes background,concept,basic methods and typical application of parallel sensing.In our formulation,sensors are redefined as the integration of real physical sensors and virtual software-defined sensors based on parallel intelligence,in order to boost the performance of the sensors.Each sensor will have a parallel counterpart in the virtual world within the framework of parallel sensing.Digital sensors serve as the brain of sensors and maintain the same properties as physical sensors.Parallel sensing allows physical sensors to operate in discrete time periods to conserve energy,while cloud-based descriptive,predictive,and prescriptive sensors operate continuously to offer compensation data and serve as guardians.To better illustrate parallel sensing concept,we show some example applications of parallel sensing such as parallel vision,parallel point cloud and parallel light fields,both of which are designed by construct virtual sensors to extend small real data to virtual big data and then boost the performance of perception models.Experimental results demonstrate the effective of parallel sensing framework.The interaction between the real and virtual worlds enables sensors to operate actively,allowing them to intelligently adapt to various scenarios and ultimately attain the goal of“Cognitive,Parallel,Crypto,Federated,Social and Ecologic”6S sensing.展开更多
Withthe rapiddevelopment of deep learning,the size of data sets anddeepneuralnetworks(DNNs)models are also booming.As a result,the intolerable long time for models’training or inference with conventional strategies c...Withthe rapiddevelopment of deep learning,the size of data sets anddeepneuralnetworks(DNNs)models are also booming.As a result,the intolerable long time for models’training or inference with conventional strategies can not meet the satisfaction of modern tasks gradually.Moreover,devices stay idle in the scenario of edge computing(EC),which presents a waste of resources since they can share the pressure of the busy devices but they do not.To address the problem,the strategy leveraging distributed processing has been applied to load computation tasks from a single processor to a group of devices,which results in the acceleration of training or inference of DNN models and promotes the high utilization of devices in edge computing.Compared with existing papers,this paper presents an enlightening and novel review of applying distributed processing with data and model parallelism to improve deep learning tasks in edge computing.Considering the practicalities,commonly used lightweight models in a distributed system are introduced as well.As the key technique,the parallel strategy will be described in detail.Then some typical applications of distributed processing will be analyzed.Finally,the challenges of distributed processing with edge computing will be described.展开更多
This peper defines the communication-efficiency, which is directly related to the cost-efficiency, and Studies the relationship between the communication-efficiency and the processor-efficiency when they are applied t...This peper defines the communication-efficiency, which is directly related to the cost-efficiency, and Studies the relationship between the communication-efficiency and the processor-efficiency when they are applied to scalability analysis. An example of algorithms is given to analyze some typical architectures.展开更多
This paper investigates the comparison problem of the reliability index between a parallel and a cold-standby system,both of which are consisting of two identical units.On the contrary to the general intuitive result,...This paper investigates the comparison problem of the reliability index between a parallel and a cold-standby system,both of which are consisting of two identical units.On the contrary to the general intuitive result,we proved that,under the condition that the system is shocked by a Poisson stream,the life time of the parallel system is longer than that of the cold-standby one in the sense of probability.展开更多
In order to gain practical experience and hands-on skills,full-time professional master degree postgraduate in mineral processing engineering should engage in professional practices.Nonetheless,a series of problems,in...In order to gain practical experience and hands-on skills,full-time professional master degree postgraduate in mineral processing engineering should engage in professional practices.Nonetheless,a series of problems,including insufficient time for practice,low management level,inadequate implementation of the double-supervisor system,and poor results of professional practice,has reduced the effectiveness of professional practice.In view of the aforementioned problems and the characteristics of the discipline,this paper proposes several strategies for improving the effectiveness of professional practice for postgraduates in mineral processing engineering.展开更多
文摘Real-time capabilities and computational efficiency are provided by parallel image processing utilizing OpenMP. However, race conditions can affect the accuracy and reliability of the outcomes. This paper highlights the importance of addressing race conditions in parallel image processing, specifically focusing on color inverse filtering using OpenMP. We considered three solutions to solve race conditions, each with distinct characteristics: #pragma omp atomic: Protects individual memory operations for fine-grained control. #pragma omp critical: Protects entire code blocks for exclusive access. #pragma omp parallel sections reduction: Employs a reduction clause for safe aggregation of values across threads. Our findings show that the produced images were unaffected by race condition. However, it becomes evident that solving the race conditions in the code makes it significantly faster, especially when it is executed on multiple cores.
文摘In recent years, the widespread adoption of parallel computing, especially in multi-core processors and high-performance computing environments, ushered in a new era of efficiency and speed. This trend was particularly noteworthy in the field of image processing, which witnessed significant advancements. This parallel computing project explored the field of parallel image processing, with a focus on the grayscale conversion of colorful images. Our approach involved integrating OpenMP into our framework for parallelization to execute a critical image processing task: grayscale conversion. By using OpenMP, we strategically enhanced the overall performance of the conversion process by distributing the workload across multiple threads. The primary objectives of our project revolved around optimizing computation time and improving overall efficiency, particularly in the task of grayscale conversion of colorful images. Utilizing OpenMP for concurrent processing across multiple cores significantly reduced execution times through the effective distribution of tasks among these cores. The speedup values for various image sizes highlighted the efficacy of parallel processing, especially for large images. However, a detailed examination revealed a potential decline in parallelization efficiency with an increasing number of cores. This underscored the importance of a carefully optimized parallelization strategy, considering factors like load balancing and minimizing communication overhead. Despite challenges, the overall scalability and efficiency achieved with parallel image processing underscored OpenMP’s effectiveness in accelerating image manipulation tasks.
基金National Natural Science Foundation of China(82230043,82293642)。
文摘SIL1,an endoplasmic reticulum(ER)-resident protein,is reported to play a protective role in Alzheimer’s disease(AD).However,the effect of SIL1 on amyloid precursor protein(APP)processing remains unclear.In this study,the role of SIL1 in APP processing was explored both in vitro and in vivo.In the in vitro experiment,SIL1 was either overexpressed or knocked down in cells stably expressing the human Swedish mutant APP695.In the in vivo experiment,AAV-SIL1-EGFP or AAV-EGFP was microinjected into APP23/PS45 mice and their wild-type littermates.Western blotting(WB),immunohistochemistry,RNA sequencing(RNA-seq),and behavioral experiments were performed to evaluate the relevant parameters.Results indicated that SIL1 expression decreased in APP23/PS45 mice.Overexpression of SIL1 significantly decreased the protein levels of APP,presenilin-1(PS1),and C-terminal fragments(CTFs)of APP in vivo and in vitro.Conversely,knockdown of SIL1 increased the protein levels of APP,β-site APP cleavage enzyme 1(BACE1),PS1,and CTFs,as well as APP mRNA expression in 2EB2 cells.Furthermore,SIL1 overexpression reduced the number of senile plaques in APP23/PS45 mice.Importantly,Y-maze and Morris Water maze tests demonstrated that SIL1 overexpression improved cognitive impairment in APP23/PS45 mice.These findings indicate that SIL1 improves cognitive impairment in APP23/PS45 mice by inhibiting APP amyloidogenic processing and suggest that SIL1 is a potential therapeutic target for AD by modulating APP processing.
基金The 111 project(B07018) Supported by Program for Changjiang Scholars and Innovative Research Teamin University(IRT0423)
文摘To improve image processing speed and detection precision of a surface detection system on a strip surface,based on the analysis of the characteristics of image data and image processing in detection system on the strip surface,the design of parallel image processing system and the methods of algorithm implementation have been studied. By using field programmable gate array(FPGA) as hardware platform of implementation and considering the characteristic of detection system on the strip surface,a parallel image processing system implemented by using multi IP kernel is designed. According to different computing tasks and the load balancing capability of parallel processing system,the system could set different calculating numbers of nodes to meet the system's demand and save the hardware cost.
基金Sponsored by National Natural Science Foundation of China(60572098)
文摘ADSP-TS101 is a high performance DSP with good properties of parallel processing and high speed.According to the real-time processing requirements of underwater acoustic communication algorithms,a real-time parallel processing system with multi-channel synchronous sample,which is composed of multiple ADSP-TS101s,is designed and carried out.For the hardware design,field programmable gate array(FPGA)logical control is adopted for the design of multi-channel synchronous sample module and cluster/data flow associated pin connection mode is adopted for multiprocessing parallel processing configuration respectively.And the software is optimized by two kinds of communication ways:broadcast writing way through shared bus and point-to-point way through link ports.Through the whole system installation,connective debugging,and experiments in a lake,the results show that the real-time parallel processing system has good stability and real-time processing capability and meets the technical design requirements of real-time processing.
文摘Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast.
文摘A conventional non-computerized numerical control (CNC) machine is updated by mounting a six degree-of-free (DOF) parallel mechanism on it, thus obtaining a new CNC one. The structure of this CNC milling machine is introduced, and the workpiece locating system and the post processing system of the cutter location (CL) data file are analyzed. The new machine has advantages of low costs, simple structure, good rigidity, and high precision. It is easy to be transformed and used to process the workpiece with a complex surface.
文摘Implementation of artificial neural network(ANN)is very important to theoretical studyand applications of ANN.On the basis of studying existing methods,this paper concentrateson the DSP-based virtual implementation of ANN.A parallel processing system composed ofTMS320C30 has been designed and configured,which ean provide a peak speed as high as100 MFLOPS and a parallel efficiency of 90%(during the forward phase of BP),and can heused for sonar signal processing.Scalability of the system is also studied.
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
基金Sponsored bythe National Natural Science Foundation of China(70671009)the Postgraduate Science and Innovation Project of Beijing Instituteof Technology (GC200818)
文摘The new model for parallel repairable system is introduced, and it is based on the practice problems of maintenance and the idea of Ion-Channel modeling. In the new model, repair times that are sufficiently short (less than some critical value) do not result in system failure, and such a repair interval is omitted from the downtime record. Usually, the underlying process is Markov process if the durations of working and repair time have the negative-exponential distributions, but the new system has not the Markov properties, which is worth to study. The reliability indexes such as instantaneous availability and steady-state availabilities for the new system are given through probability analysis. A numerical example is given to illustrate the results.
基金supported by the National Key R&D Program of China(2018AAA0101502)the Science and Technology Project of SGCC(State Grid Corporation of China):Fundamental Theory of Human-in-the-Loop Hybrid-Augmented Intelligence for Power Grid Dispatch and Control。
文摘In the construction of Metaverses,sensors that are referred to as the“bridge of information transmission”,play a key role.The functionality and efficiency of today’s sensors,which operate in a manner similar to physical sensing,are frequently constrained by their hardware and software.In this research,we proposed the Parallel Sensing framework,which includes background,concept,basic methods and typical application of parallel sensing.In our formulation,sensors are redefined as the integration of real physical sensors and virtual software-defined sensors based on parallel intelligence,in order to boost the performance of the sensors.Each sensor will have a parallel counterpart in the virtual world within the framework of parallel sensing.Digital sensors serve as the brain of sensors and maintain the same properties as physical sensors.Parallel sensing allows physical sensors to operate in discrete time periods to conserve energy,while cloud-based descriptive,predictive,and prescriptive sensors operate continuously to offer compensation data and serve as guardians.To better illustrate parallel sensing concept,we show some example applications of parallel sensing such as parallel vision,parallel point cloud and parallel light fields,both of which are designed by construct virtual sensors to extend small real data to virtual big data and then boost the performance of perception models.Experimental results demonstrate the effective of parallel sensing framework.The interaction between the real and virtual worlds enables sensors to operate actively,allowing them to intelligently adapt to various scenarios and ultimately attain the goal of“Cognitive,Parallel,Crypto,Federated,Social and Ecologic”6S sensing.
基金supported by the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20211284the Financial and Science Technology Plan Project of Xinjiang Production,Construction Corps under Grant No.2020DB005the National Natural Science Foundation of China under Grant Nos.61872219,62002276 and 62177014。
文摘Withthe rapiddevelopment of deep learning,the size of data sets anddeepneuralnetworks(DNNs)models are also booming.As a result,the intolerable long time for models’training or inference with conventional strategies can not meet the satisfaction of modern tasks gradually.Moreover,devices stay idle in the scenario of edge computing(EC),which presents a waste of resources since they can share the pressure of the busy devices but they do not.To address the problem,the strategy leveraging distributed processing has been applied to load computation tasks from a single processor to a group of devices,which results in the acceleration of training or inference of DNN models and promotes the high utilization of devices in edge computing.Compared with existing papers,this paper presents an enlightening and novel review of applying distributed processing with data and model parallelism to improve deep learning tasks in edge computing.Considering the practicalities,commonly used lightweight models in a distributed system are introduced as well.As the key technique,the parallel strategy will be described in detail.Then some typical applications of distributed processing will be analyzed.Finally,the challenges of distributed processing with edge computing will be described.
文摘This peper defines the communication-efficiency, which is directly related to the cost-efficiency, and Studies the relationship between the communication-efficiency and the processor-efficiency when they are applied to scalability analysis. An example of algorithms is given to analyze some typical architectures.
文摘This paper investigates the comparison problem of the reliability index between a parallel and a cold-standby system,both of which are consisting of two identical units.On the contrary to the general intuitive result,we proved that,under the condition that the system is shocked by a Poisson stream,the life time of the parallel system is longer than that of the cold-standby one in the sense of probability.
基金This work was supported by The Graduate Education and Teaching Reform Project of CUMTB(YJG202200301)The Yueqi Outstanding Scholar Award of CUMTB and Science and Technology Major Project of Ordos City-Iconic Innovation Team(202204).
文摘In order to gain practical experience and hands-on skills,full-time professional master degree postgraduate in mineral processing engineering should engage in professional practices.Nonetheless,a series of problems,including insufficient time for practice,low management level,inadequate implementation of the double-supervisor system,and poor results of professional practice,has reduced the effectiveness of professional practice.In view of the aforementioned problems and the characteristics of the discipline,this paper proposes several strategies for improving the effectiveness of professional practice for postgraduates in mineral processing engineering.