In marine environments,reinforced concrete bridge structures are sub-jected to cyclic loads and chloride ingress,which results in corrosion of the rein-forcing bars,early deterioration,durability loss,and a considerab...In marine environments,reinforced concrete bridge structures are sub-jected to cyclic loads and chloride ingress,which results in corrosion of the rein-forcing bars,early deterioration,durability loss,and a considerable reduction in the fatigue strength.Owing to the complexity of the problem and the difficulty of testing,there are few studies on the fatigue performance of concrete structures under the combined action of corrosion environment and cyclic load.Therefore,a coupling test device for corrosion and cyclic load is designed and fatigue tests of reinforced concrete beams in air environments and chlorine salt corrosive envir-onments are carried out.The fatigue corrosion process,damage mode,and corro-sion features of the test beams as well as chloride ion content in concrete are analyzed.The relationships of deflection,crack,and number of cycles in the dif-ferent environments are given.Results show that the fatigue life of the beam is.greatly reduced under coupled effects of the cyclic load and corrosive environ-ment,the failure fom of the beam is corrosion fatigue damage.The deflection and crack keeps growing with the increase in loading cycles.Under the coupling of cyclic load and corrosion env ironment,the content of chloride ion in concrete is low and there is less variety along the direction of penetration.展开更多
The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc...The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC co...This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns.展开更多
The development of an innovative structural system with satisfactory seismic performance of braced systems is an important and challenging area of interest in structural engineering. In this paper, a device that can r...The development of an innovative structural system with satisfactory seismic performance of braced systems is an important and challenging area of interest in structural engineering. In this paper, a device that can release the compressive force in the bracing members is developed, and its performance is evaluated. For comparison, four steel braced RC frames were constructed and tested under reverse cyclic loads. Two of them had different amounts of bracing and the other two had the same amount of bracing but incorporated different type of device, called compression release device, which is developed and described in this paper. It can be concluded from the test results that the newly developed device can effectively be used in steel braced systems to prevent buckling failure of the bracing members. Therefore, the device enhances the ductility of brace-framed systems by allowing an adequate capacity for energy dissipation.展开更多
Recent developments on high-performance double-hooked-end steel fibers have enhanced the wide applications of steel fiber reinforced concrete(SFRC).This study presents the compressive properties and the cyclic flexura...Recent developments on high-performance double-hooked-end steel fibers have enhanced the wide applications of steel fiber reinforced concrete(SFRC).This study presents the compressive properties and the cyclic flexural performance of the SFRC that were experimentally examined.Three different double-hooked-end steel fibers at 0.25%,0.5%,0.75%,and 1%volume fractions were considered.All fiber types had similar length to diameter ratios,while the first two fiber types had similar anchorage mechanisms(4D)and tensile strength and the third type had different anchorage mechanism(5D)and a higher tensile strength.The increased volumetric ratio of the fibers increased the post-peak compressive strain(ductility),the tensile strength,and the cyclic flexural strength and cumulative energy dissipation characteristics of the SFRC.Among the 4D fibers,the mixtures with the larger steel fibers showed higher flexural strength and more energy dissipation compared to the SFRCs with smaller size fibers.For 1%steel fiber dosage,4D and 5D specimens showed similar cyclic flexural responses.Finally,a 3D finite element model that can predict the monotonic and cyclic flexural responses of the double-hooked-end SFRC was developed.The calibration process considered the results obtained from the inverse analysis to determine the tensile behavior of the SFRC.展开更多
基金The author(s)received funding for this study from Open Research Fund Program of State key Laboratory of Hydroscience and Engineering(No.sklhse-2018-C-05).
文摘In marine environments,reinforced concrete bridge structures are sub-jected to cyclic loads and chloride ingress,which results in corrosion of the rein-forcing bars,early deterioration,durability loss,and a considerable reduction in the fatigue strength.Owing to the complexity of the problem and the difficulty of testing,there are few studies on the fatigue performance of concrete structures under the combined action of corrosion environment and cyclic load.Therefore,a coupling test device for corrosion and cyclic load is designed and fatigue tests of reinforced concrete beams in air environments and chlorine salt corrosive envir-onments are carried out.The fatigue corrosion process,damage mode,and corro-sion features of the test beams as well as chloride ion content in concrete are analyzed.The relationships of deflection,crack,and number of cycles in the dif-ferent environments are given.Results show that the fatigue life of the beam is.greatly reduced under coupled effects of the cyclic load and corrosive environ-ment,the failure fom of the beam is corrosion fatigue damage.The deflection and crack keeps growing with the increase in loading cycles.Under the coupling of cyclic load and corrosion env ironment,the content of chloride ion in concrete is low and there is less variety along the direction of penetration.
基金Project(200801410005) supported by Doctoral Foundation of Ministry of Education of China
文摘The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金Natural Science Foundation of China(NSFC)under Grant No.51868073Special Funds for Technology Innovation Guidance of Shaanxi under Grant No.2019CGHJ-06+1 种基金Natural Science Foundation of Shaanxi under Grant No.2018JQ5005Special Fund for Basic Scientific Research of Central Colleges under Grant No.300102288302。
文摘This study investigates the seismic performance of multiple reinforcement,high-strength concrete(MRHSC)columns that are characterized by multiple transverse and longitudinal reinforcements in core areas.Eight MRHSC columns were designed and subjected to a low cycle,reversed loading test.The response,including the failure modes,hysteretic behavior,lateral bearing capacity,and displacement ductility,was analyzed.The effects of the axial compression ratio,stirrup form,and stirrup spacing of the central reinforcement configuration on the seismic performance of the columns were studied.Furthermore,an analytical model was developed to predict the backbone force-displacement curves of the MRHSC columns.The test results showed that these columns experienced two failure modes:shear failure and flexure-shear failure.As the axial compression ratio increased,the bearing capacity increased significantly,whereas the deformation capacity and ductility decreased.A decrease in the spacing of central transverse reinforcements improved the ductility and delayed the degradation of load-bearing capacity.The proposed analytical model can accurately predict the lateral force and deformations of MRHSC columns.
文摘The development of an innovative structural system with satisfactory seismic performance of braced systems is an important and challenging area of interest in structural engineering. In this paper, a device that can release the compressive force in the bracing members is developed, and its performance is evaluated. For comparison, four steel braced RC frames were constructed and tested under reverse cyclic loads. Two of them had different amounts of bracing and the other two had the same amount of bracing but incorporated different type of device, called compression release device, which is developed and described in this paper. It can be concluded from the test results that the newly developed device can effectively be used in steel braced systems to prevent buckling failure of the bracing members. Therefore, the device enhances the ductility of brace-framed systems by allowing an adequate capacity for energy dissipation.
基金The authors would like to thank the MasterCard Foundation Scholars Program for the financial support provided to the first author.
文摘Recent developments on high-performance double-hooked-end steel fibers have enhanced the wide applications of steel fiber reinforced concrete(SFRC).This study presents the compressive properties and the cyclic flexural performance of the SFRC that were experimentally examined.Three different double-hooked-end steel fibers at 0.25%,0.5%,0.75%,and 1%volume fractions were considered.All fiber types had similar length to diameter ratios,while the first two fiber types had similar anchorage mechanisms(4D)and tensile strength and the third type had different anchorage mechanism(5D)and a higher tensile strength.The increased volumetric ratio of the fibers increased the post-peak compressive strain(ductility),the tensile strength,and the cyclic flexural strength and cumulative energy dissipation characteristics of the SFRC.Among the 4D fibers,the mixtures with the larger steel fibers showed higher flexural strength and more energy dissipation compared to the SFRCs with smaller size fibers.For 1%steel fiber dosage,4D and 5D specimens showed similar cyclic flexural responses.Finally,a 3D finite element model that can predict the monotonic and cyclic flexural responses of the double-hooked-end SFRC was developed.The calibration process considered the results obtained from the inverse analysis to determine the tensile behavior of the SFRC.