期刊文献+
共找到667篇文章
< 1 2 34 >
每页显示 20 50 100
A Review of Research on Handwritten Chinese Character Recognition with Multi-Feature Fusion
1
作者 Peng Deng Guiying Yang 《Journal of Electronic Research and Application》 2024年第5期109-117,共9页
This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin... This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions. 展开更多
关键词 chinese character recognition Multi-feature fusion Machine learning
下载PDF
An on-line free handwritten Chinese character recognition method based on component cascaded HMMs 被引量:1
2
作者 Zhao Wei(赵巍) Liu Jiafeng Tang Xianglong 《High Technology Letters》 EI CAS 2005年第3期301-305,共5页
This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and... This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%. 展开更多
关键词 chinese character recognition handwritten component HMM cascaded model
下载PDF
Structural recognition of ancient Chinese ideographic characters
3
作者 Li Ning Chen Dan 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S2期233-237,共5页
Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese ch... Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method. 展开更多
关键词 IDEOGRAPHIC character recognition sTRUCTURAL recognition chinese information PROCEssING
下载PDF
Data Pre-processing and Stroke Segment Extraction for On-line Handwritten Chinese Character Recognition
4
作者 唐降龙 舒文豪 +1 位作者 刘家锋 李铁才 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第3期76-81,共6页
The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by ... The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by stroke Joinings. The techniques of data pre-processing and stroke segment extraction have been described. In extracting stroke segment, not only the characteristics of the stroke itself, but also its absolute positions as well as relative positions with other strokes in the character have been taken into account.The primitive features for recognition were extracted under these comprehensive considerations. 展开更多
关键词 ss: ON-LINE chinese character recognition sEGMENT EXTRACTION
下载PDF
Research on Handwritten Chinese Character Recognition Based on BP Neural Network 被引量:1
5
作者 Zihao Ning 《Modern Electronic Technology》 2022年第1期12-32,共21页
The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object ... The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object in image pattern recognition,has many applications in people’s daily life,and more and more scholars are beginning to study off-line handwritten Chinese character recognition.This paper mainly studies the recognition of handwritten Chinese characters by BP(Back Propagation)neural network.Establish a handwritten Chinese character recognition model based on BP neural network,and then verify the accuracy and feasibility of the neural network through GUI(Graphical User Interface)model established by Matlab.This paper mainly includes the following aspects:Firstly,the preprocessing process of handwritten Chinese character recognition in this paper is analyzed.Among them,image preprocessing mainly includes six processes:graying,binarization,smoothing and denoising,character segmentation,histogram equalization and normalization.Secondly,through the comparative selection of feature extraction methods for handwritten Chinese characters,and through the comparative analysis of the results of three different feature extraction methods,the most suitable feature extraction method for this paper is found.Finally,it is the application of BP neural network in handwritten Chinese character recognition.The establishment,training process and parameter selection of BP neural network are described in detail.The simulation software platform chosen in this paper is Matlab,and the sample images are used to train BP neural network to verify the feasibility of Chinese character recognition.Design the GUI interface of human-computer interaction based on Matlab,show the process and results of handwritten Chinese character recognition,and analyze the experimental results. 展开更多
关键词 Pattern recognition Handwritten chinese character recognition BP neural network
下载PDF
Information Moment for Chinese Character Recognition
6
作者 孙农亮 李明达 +1 位作者 白霄 孟霏 《Journal of Measurement Science and Instrumentation》 CAS 2011年第2期148-151,共4页
Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of inform... Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of information moments and demonstrate its invariance to translation,rotation and scaling.Also they perform the experiment in which information moments compared with moment invaiants for the effects of similar Chinese characters and font recognition.At last they show the recognition rate of 88% by information moments,with 70% by moment inariants. 展开更多
关键词 information moment chinese character recognition moment invariants
下载PDF
A New Method for Chinese Character Strokes Recognition
7
作者 Yan Xu Xiangnian Huang +1 位作者 Huan Chen Huizhu Jiang 《Open Journal of Applied Sciences》 2012年第3期184-187,共4页
In this paper, the problem of stroke recognition has been studied, and the strategies and the algorithms related to the problem are proposed or developed. Based on studying some current methods for Chinese characters ... In this paper, the problem of stroke recognition has been studied, and the strategies and the algorithms related to the problem are proposed or developed. Based on studying some current methods for Chinese characters strokes recognition, a new method called combining trial is presented. The analysis and results of experiments showed that the method has the advantage of high degree of steadiness. 展开更多
关键词 chinese character recognition sTROKE recognition sTROKE COMBINING
下载PDF
A Novel 6G Scalable Blockchain Clustering-Based Computer Vision Character Detection for Mobile Images
8
作者 Yuejie Li Shijun Li 《Computers, Materials & Continua》 SCIE EI 2024年第3期3041-3070,共30页
6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is... 6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques. 展开更多
关键词 6G technology blockchain end-to-end recognition chinese characters natural scene computer vision algorithms convolutional neural network
下载PDF
A 4-Corner Codes Classifier Based on Decision Tree Inductive Learning for Handwritten Chinese Characters
9
作者 钱国良 王亚东 舒文豪 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1998年第2期26-31,共6页
The classification for handwritten Chinese character recognition can be viewed as a transformation in discrete vector space. In this paper, from the point of discrete vector space transformation, a new 4-corner codes ... The classification for handwritten Chinese character recognition can be viewed as a transformation in discrete vector space. In this paper, from the point of discrete vector space transformation, a new 4-corner codes classifier based on decision tree inductive learning algorithm ID3 for handwritten Chinese characters is presented. With a feature extraction controller, the classifier can reduce the number of extracted features and accelerate classification speed. Experimental results show that the 4-corner codes classifier performs well on both recognition accuracy and speed. 展开更多
关键词 Handwritten chinese character recognition classification discrete vector space transformation DECIsION tree INDUCTIVE learning 4-corner CODEs
下载PDF
基于Swin Transformer和CNN的汉字书法教学系统 被引量:1
10
作者 林粤伟 张通 +2 位作者 宋丹 梁汇鑫 薛克程 《青岛大学学报(自然科学版)》 CAS 2024年第1期45-51,共7页
针对日益增长的汉字书法学习需求,将滑动窗口自注意力(Swin Transformer,ST)模型和卷积神经网络(Convolutional Neural Network,CNN)模型相结合,提出手写体汉字识别ST-CNN模型,进而开发了汉字书法教学系统。实测结果表明,ST-CNN模型识... 针对日益增长的汉字书法学习需求,将滑动窗口自注意力(Swin Transformer,ST)模型和卷积神经网络(Convolutional Neural Network,CNN)模型相结合,提出手写体汉字识别ST-CNN模型,进而开发了汉字书法教学系统。实测结果表明,ST-CNN模型识别准确率约为91.6%,较传统的ST模型提升了约0.5个百分点,较传统的CNN模型与ST模型,在收敛速度上分别提升了约10和30个百分点,开发的汉字书法教学系统性能良好。 展开更多
关键词 深度学习 滑动窗口自注意力模型 卷积神经网络 手写体汉字识别
下载PDF
Processing Chinese hand-radicals activates the medial frontal gyrus A functional MRI investigation
11
作者 Qing-Lin Wu Yu-Chen Chan +3 位作者 Joseph P.Lavallee Hsueh-Chin Chen Kuo-En Chang Yao-Ting Sung 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第20期1837-1843,共7页
Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studi... Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studies supporting this theory have focused on Chinese characters, less attention has been paid to their semantic radicals. Indeed, there is still disagreement about whether these radicals are processed independently. The present study investigated whether radicals are processed separately and, if so, whether this processing occurs in sensory-motor regions. Materials consisted of 72 high-frequency Chinese characters, with 18 in each of four categories: hand-action verbs with and without hand-radicals, and verbs not related to hand actions, with and without hand-radicals. Twenty-eight participants underwent functional MRI scans while reading the characters. Compared to characters without hand-radicals, reading characters with hand-radicals activated the right medial frontal gyrus. Verbs involving hand-action activated the left inferior parietal lobule, possibly reflecting integration of information in the radical with the semantic meaning of the verb. The findings may be consistent with embodied semantics theory and suggest that neural representation of radicals is indispensable in processing Chinese characters. 展开更多
关键词 neural regeneration NEUROIMAGING functional MRI hand-radical radical representation chinese character recognition embodied semantics semantic function chinese learning grants-supported paper NEUROREGENERATION
下载PDF
基于Fisher准则的多特征融合 被引量:8
12
作者 王正群 孙兴华 +1 位作者 郭丽 杨静宇 《计算机工程》 CAS CSCD 北大核心 2002年第3期41-42,共2页
阐述了单个特征向量及其鉴别矢量与模式可分性的关系最佳鉴别矢量使模式关于该特征具有最大的可分性。给出了多特征融合的一,种方法,它综合考查了模式对不同的特征、不同的鉴别矢量的可分性,由多个特征经融合产生的新特征吸收了单个特... 阐述了单个特征向量及其鉴别矢量与模式可分性的关系最佳鉴别矢量使模式关于该特征具有最大的可分性。给出了多特征融合的一,种方法,它综合考查了模式对不同的特征、不同的鉴别矢量的可分性,由多个特征经融合产生的新特征吸收了单个特征的对模式分类的优势。手写体汉字的识别试验验证了所给方法的有效性。 展开更多
关键词 FIsHER准则 手写体汉字 多特征融合 信息融合 信息处理 汉字识别
下载PDF
MST在手写汉字切分中的应用 被引量:7
13
作者 韩勇 须德 戴国忠 《软件学报》 EI CSCD 北大核心 2006年第3期403-409,共7页
手写汉字切分是根据输入笔迹的空间位置关系进行汉字部件的合并切分,形成完整的汉字笔划以便进行识别处理.综合利用了汉字部件的结构位置关系和笔划的空间位置关系,根据笔划的最小生成树(minimalspanningtree,简称MST)对联机连续手写输... 手写汉字切分是根据输入笔迹的空间位置关系进行汉字部件的合并切分,形成完整的汉字笔划以便进行识别处理.综合利用了汉字部件的结构位置关系和笔划的空间位置关系,根据笔划的最小生成树(minimalspanningtree,简称MST)对联机连续手写输入汉字进行切分,取得了较好的切分结果.切分的准确率超过91.6%. 展开更多
关键词 字符切分 手写汉字 部件结构 联机识别
下载PDF
基于核聚类的SVM多类分类方法 被引量:11
14
作者 陈增照 杨扬 +2 位作者 何秀玲 喻莹 董才林 《计算机应用》 CSCD 北大核心 2007年第1期47-49,共3页
对支持向量机的多类分类问题进行研究,提出了一种基于核聚类的多类分类方法。利用核聚类方法将原始样本特征映射到高维特征进行聚类分组,对每一组使用一个支持向量机二值分类器进行分类,并用这些二值分类器组成决策树的节点,构成了一个... 对支持向量机的多类分类问题进行研究,提出了一种基于核聚类的多类分类方法。利用核聚类方法将原始样本特征映射到高维特征进行聚类分组,对每一组使用一个支持向量机二值分类器进行分类,并用这些二值分类器组成决策树的节点,构成了一个决策分类树。给出决策树的生成算法,提出了利用交叠系数来控制交叠,从而克服错分积累,提高分类准确率。实验结果表明,采用该方法,手写体汉字识别速度和正确率都达到了实用的要求。 展开更多
关键词 支持向量机 多类分类 核聚类 手写体汉字识别
下载PDF
基于SVM的脱机手写汉字机器学习识别方法研究 被引量:6
15
作者 王建平 陈军 +1 位作者 徐晓冰 王熹徽 《计算机技术与发展》 2006年第10期104-107,共4页
提出了一种模糊统计方法的脱机手写体汉字特征提取方法,结合小波网格方法和汉字笔画密度特征方法对汉字进行特征提取,并运用支持向量机方法,通过机器学习对脱机手写汉字识别。仿真实验表明,支持向量机方法在脱机手写汉字识别中有良好的... 提出了一种模糊统计方法的脱机手写体汉字特征提取方法,结合小波网格方法和汉字笔画密度特征方法对汉字进行特征提取,并运用支持向量机方法,通过机器学习对脱机手写汉字识别。仿真实验表明,支持向量机方法在脱机手写汉字识别中有良好的识别性能及模糊统计方法是有效的。 展开更多
关键词 支持向量机 脱机手写汉字体汉字 模糊统计特征 汉字识别
下载PDF
一种基于SVM的车牌汉字的有效识别方法 被引量:12
16
作者 王晓光 王晓华 《计算机工程与应用》 CSCD 北大核心 2004年第24期208-209,222,共3页
支持向量机(SVM)是20世纪90年代初由Vapnik等人提出的一类新型机器学习方法,此方法能够在训练样本很少的情况下达到很好的分类推广能力。文章应用SVM算法对车牌中的汉字字符进行识别,在无字符特征提取的情况下可得到较高的识别率和识别... 支持向量机(SVM)是20世纪90年代初由Vapnik等人提出的一类新型机器学习方法,此方法能够在训练样本很少的情况下达到很好的分类推广能力。文章应用SVM算法对车牌中的汉字字符进行识别,在无字符特征提取的情况下可得到较高的识别率和识别速度。通过与无字符特征提取的BP网络识别系统比较表明,在小样本的情况下,该方法的识别率远优于神经网络,并避免了神经网络的局部极值等的问题。 展开更多
关键词 支持矢量机 车牌汉字识别 BP网络
下载PDF
自然手写汉字FS识别法 被引量:1
17
作者 程萍 黄襄念 程全胜 《计算机应用》 CSCD 北大核心 2001年第1期46-48,共3页
提出联机识别自然手写汉字的FS识别法。在剖析五笔字根结构和编码原则基础上 ,对五笔字根作适应性改造 ,将键盘输入技术与联机识别技术有机融合的一种识别体系。在多库识别体系中首次采用层间分级技术。分析和实验表明 :充分考虑了自然... 提出联机识别自然手写汉字的FS识别法。在剖析五笔字根结构和编码原则基础上 ,对五笔字根作适应性改造 ,将键盘输入技术与联机识别技术有机融合的一种识别体系。在多库识别体系中首次采用层间分级技术。分析和实验表明 :充分考虑了自然手写汉字书写习惯和结构特征 ,系统有较高稳定性。 展开更多
关键词 模式识别 联机识别 汉字识别 识别方法 自然手写汉字
下载PDF
FSVM在有限集脱机手写体汉字识别中的应用 被引量:2
18
作者 童学锋 石繁槐 《计算机工程》 CAS CSCD 北大核心 2003年第13期109-111,共3页
模糊支持向量机方法解决了多类支持向量机方法中的不可分区域问题。将模糊支持向量机方法引入到有限集脱机手写体汉字识别中,并以同济大学成绩自动识别系统为背景进行了一系列实验,结果表明在相同的条件下可以达到比支持向量机方法更... 模糊支持向量机方法解决了多类支持向量机方法中的不可分区域问题。将模糊支持向量机方法引入到有限集脱机手写体汉字识别中,并以同济大学成绩自动识别系统为背景进行了一系列实验,结果表明在相同的条件下可以达到比支持向量机方法更为理想的识别效果。 展开更多
关键词 支持向量机 模糊支持向量机 手写体汉字识别 FsVM
下载PDF
基于融合特征和LS-SVM的脱机手写体汉字识别 被引量:4
19
作者 高彦宇 杨扬 陈飞 《北京科技大学学报》 EI CAS CSCD 北大核心 2005年第4期509-512,共4页
提出的脱机手写体汉字识别系统主要研究特征提取和分类识别两个模块.特征提取模块主要包括采用基于不变矩和弹性网格技术的串行特征融合方法,所得到的特征向量不仅充分反映了手写体汉字的全局和局部特征,而且具有很强的区分表达能力.分... 提出的脱机手写体汉字识别系统主要研究特征提取和分类识别两个模块.特征提取模块主要包括采用基于不变矩和弹性网格技术的串行特征融合方法,所得到的特征向量不仅充分反映了手写体汉字的全局和局部特征,而且具有很强的区分表达能力.分类识别模块将神经网络多类分类策略与最小二乘支持向量机相结合,所得到的分类器不仅识别率高、泛化能力强,而且有效地解决了多类分类问题.实验证明本文提出的识别系统能够取得很好的识别效果. 展开更多
关键词 脱机手写体汉字识别 最小二乘支持向量机 ZEMIKE矩 弹性网格
下载PDF
基于字词联合训练的Bi-LSTM中文电子病历命名实体识别 被引量:6
20
作者 万里 罗曜儒 +1 位作者 李智 綦小蓉 《中国数字医学》 2019年第2期54-56,共3页
为了实现对中文电子病历中实体的自动化识别与信息抽取,提出了一种基于字词联合训练的双向长短时记忆网络(Bi-LSTM)命名实体识别新算法。根据中文语言特性,在传统词向量中融入字向量的语义信息并将其作为神经网络的输入。实验过程中训... 为了实现对中文电子病历中实体的自动化识别与信息抽取,提出了一种基于字词联合训练的双向长短时记忆网络(Bi-LSTM)命名实体识别新算法。根据中文语言特性,在传统词向量中融入字向量的语义信息并将其作为神经网络的输入。实验过程中训练集、验证集与测试集随机按电子病历数量的3:1:2的概率生成。通过对比论文提出的语言模型与其他模型,实验结果显示基于字词联合训练的Bi-LSTM能达到最高准确率98.28%与最低复杂度1.169。该结果证明提出的模型能有效识别中文电子病历中如疾病、症状等相关实体,为自动化处理医学文本数据提供现实基础。 展开更多
关键词 命名实体识别 字词联合训练 Bi-LsTM
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部