This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chin...This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.展开更多
This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and...This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%.展开更多
Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese ch...Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.展开更多
The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by ...The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by stroke Joinings. The techniques of data pre-processing and stroke segment extraction have been described. In extracting stroke segment, not only the characteristics of the stroke itself, but also its absolute positions as well as relative positions with other strokes in the character have been taken into account.The primitive features for recognition were extracted under these comprehensive considerations.展开更多
The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object ...The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object in image pattern recognition,has many applications in people’s daily life,and more and more scholars are beginning to study off-line handwritten Chinese character recognition.This paper mainly studies the recognition of handwritten Chinese characters by BP(Back Propagation)neural network.Establish a handwritten Chinese character recognition model based on BP neural network,and then verify the accuracy and feasibility of the neural network through GUI(Graphical User Interface)model established by Matlab.This paper mainly includes the following aspects:Firstly,the preprocessing process of handwritten Chinese character recognition in this paper is analyzed.Among them,image preprocessing mainly includes six processes:graying,binarization,smoothing and denoising,character segmentation,histogram equalization and normalization.Secondly,through the comparative selection of feature extraction methods for handwritten Chinese characters,and through the comparative analysis of the results of three different feature extraction methods,the most suitable feature extraction method for this paper is found.Finally,it is the application of BP neural network in handwritten Chinese character recognition.The establishment,training process and parameter selection of BP neural network are described in detail.The simulation software platform chosen in this paper is Matlab,and the sample images are used to train BP neural network to verify the feasibility of Chinese character recognition.Design the GUI interface of human-computer interaction based on Matlab,show the process and results of handwritten Chinese character recognition,and analyze the experimental results.展开更多
Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of inform...Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of information moments and demonstrate its invariance to translation,rotation and scaling.Also they perform the experiment in which information moments compared with moment invaiants for the effects of similar Chinese characters and font recognition.At last they show the recognition rate of 88% by information moments,with 70% by moment inariants.展开更多
In this paper, the problem of stroke recognition has been studied, and the strategies and the algorithms related to the problem are proposed or developed. Based on studying some current methods for Chinese characters ...In this paper, the problem of stroke recognition has been studied, and the strategies and the algorithms related to the problem are proposed or developed. Based on studying some current methods for Chinese characters strokes recognition, a new method called combining trial is presented. The analysis and results of experiments showed that the method has the advantage of high degree of steadiness.展开更多
6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is...6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.展开更多
The classification for handwritten Chinese character recognition can be viewed as a transformation in discrete vector space. In this paper, from the point of discrete vector space transformation, a new 4-corner codes ...The classification for handwritten Chinese character recognition can be viewed as a transformation in discrete vector space. In this paper, from the point of discrete vector space transformation, a new 4-corner codes classifier based on decision tree inductive learning algorithm ID3 for handwritten Chinese characters is presented. With a feature extraction controller, the classifier can reduce the number of extracted features and accelerate classification speed. Experimental results show that the 4-corner codes classifier performs well on both recognition accuracy and speed.展开更多
Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studi...Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studies supporting this theory have focused on Chinese characters, less attention has been paid to their semantic radicals. Indeed, there is still disagreement about whether these radicals are processed independently. The present study investigated whether radicals are processed separately and, if so, whether this processing occurs in sensory-motor regions. Materials consisted of 72 high-frequency Chinese characters, with 18 in each of four categories: hand-action verbs with and without hand-radicals, and verbs not related to hand actions, with and without hand-radicals. Twenty-eight participants underwent functional MRI scans while reading the characters. Compared to characters without hand-radicals, reading characters with hand-radicals activated the right medial frontal gyrus. Verbs involving hand-action activated the left inferior parietal lobule, possibly reflecting integration of information in the radical with the semantic meaning of the verb. The findings may be consistent with embodied semantics theory and suggest that neural representation of radicals is indispensable in processing Chinese characters.展开更多
文摘This paper analyzes the progress of handwritten Chinese character recognition technology,from two perspectives:traditional recognition methods and deep learning-based recognition methods.Firstly,the complexity of Chinese character recognition is pointed out,including its numerous categories,complex structure,and the problem of similar characters,especially the variability of handwritten Chinese characters.Subsequently,recognition methods based on feature optimization,model optimization,and fusion techniques are highlighted.The fusion studies between feature optimization and model improvement are further explored,and these studies further enhance the recognition effect through complementary advantages.Finally,the article summarizes the current challenges of Chinese character recognition technology,including accuracy improvement,model complexity,and real-time problems,and looks forward to future research directions.
文摘This paper presents a cascaded Hidden Markov Model (HMM), which allows state's transition, skip and duration. The cascaded HMM extends the way of HMM pattern description of Handwritten Chinese Character (HCC) and depicts the behavior of handwritten curve more reliably in terms of the statistic probability. Hence character segmentation and labeling are unnecessary. Viterbi algorithm is integrated in the cascaded HMM after the whole sample sequence of a HCC is input. More than 26,000 component samples are used tor training 407 handwritten component HMMs. At the improved training stage 94 models of 94 Chinese characters are gained by 32,000 samples, Compared with the Segment HMMs approach, the recognition rate of this model tier the tirst candidate is 87.89% and the error rate could be reduced by 12.4%.
基金Supported by Seminar of National Social Funds Project(12&ZD234)
文摘Ancient Chinese characters, typically the ideographic characters on bones and bronze before Shang Dynasty(16th—11th century B.C.), are valuable culture legacy of history. However the recognition of Ancient Chinese characters has been the task of paleography experts for long. With the help of modern computer technique, everyone can expect to be able to recognize the characters and understand the ancient inscriptions. This research is aimed to help people recognize and understand those ancient Chinese characters by combining Chinese paleography theory and computer information processing technology. Based on the analysis of ancient character features, a method for structural character recognition is proposed. The important characteristics of strokes and basic components or radicals used in recognition are introduced in detail. A system was implemented based on above method to show the effectiveness of the method.
文摘The stroke segments:' are proposed to be used as the basic features for handwritten Chinese character recognition. In this way, it is possible to overcome the difFiculties of unstable stroke information caused by stroke Joinings. The techniques of data pre-processing and stroke segment extraction have been described. In extracting stroke segment, not only the characteristics of the stroke itself, but also its absolute positions as well as relative positions with other strokes in the character have been taken into account.The primitive features for recognition were extracted under these comprehensive considerations.
文摘The application of pattern recognition technology enables us to solve various human-computer interaction problems that were difficult to solve before.Handwritten Chinese character recognition,as a hot research object in image pattern recognition,has many applications in people’s daily life,and more and more scholars are beginning to study off-line handwritten Chinese character recognition.This paper mainly studies the recognition of handwritten Chinese characters by BP(Back Propagation)neural network.Establish a handwritten Chinese character recognition model based on BP neural network,and then verify the accuracy and feasibility of the neural network through GUI(Graphical User Interface)model established by Matlab.This paper mainly includes the following aspects:Firstly,the preprocessing process of handwritten Chinese character recognition in this paper is analyzed.Among them,image preprocessing mainly includes six processes:graying,binarization,smoothing and denoising,character segmentation,histogram equalization and normalization.Secondly,through the comparative selection of feature extraction methods for handwritten Chinese characters,and through the comparative analysis of the results of three different feature extraction methods,the most suitable feature extraction method for this paper is found.Finally,it is the application of BP neural network in handwritten Chinese character recognition.The establishment,training process and parameter selection of BP neural network are described in detail.The simulation software platform chosen in this paper is Matlab,and the sample images are used to train BP neural network to verify the feasibility of Chinese character recognition.Design the GUI interface of human-computer interaction based on Matlab,show the process and results of handwritten Chinese character recognition,and analyze the experimental results.
基金supported by the Specical Fund of Taishan Scholar of Shandong Province
文摘Moment invariants firstly introduced by M. K Hu in 1962, has some shortcomings. After counting a large number of statistical distribution information of Chinese characters,the authors put forward the concept of information moments and demonstrate its invariance to translation,rotation and scaling.Also they perform the experiment in which information moments compared with moment invaiants for the effects of similar Chinese characters and font recognition.At last they show the recognition rate of 88% by information moments,with 70% by moment inariants.
文摘In this paper, the problem of stroke recognition has been studied, and the strategies and the algorithms related to the problem are proposed or developed. Based on studying some current methods for Chinese characters strokes recognition, a new method called combining trial is presented. The analysis and results of experiments showed that the method has the advantage of high degree of steadiness.
基金supported by the Inner Mongolia Natural Science Fund Project(2019MS06013)Ordos Science and Technology Plan Project(2022YY041)Hunan Enterprise Science and Technology Commissioner Program(2021GK5042).
文摘6G is envisioned as the next generation of wireless communication technology,promising unprecedented data speeds,ultra-low Latency,and ubiquitous Connectivity.In tandem with these advancements,blockchain technology is leveraged to enhance computer vision applications’security,trustworthiness,and transparency.With the widespread use of mobile devices equipped with cameras,the ability to capture and recognize Chinese characters in natural scenes has become increasingly important.Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount,such as facial recognition or personal healthcare monitoring.Users can control their visual data and grant or revoke access as needed.Recognizing Chinese characters from images can provide convenience in various aspects of people’s lives.However,traditional Chinese character text recognition methods often need higher accuracy,leading to recognition failures or incorrect character identification.In contrast,computer vision technologies have significantly improved image recognition accuracy.This paper proposed a Secure end-to-end recognition system(SE2ERS)for Chinese characters in natural scenes based on convolutional neural networks(CNN)using 6G technology.The proposed SE2ERS model uses the Weighted Hyperbolic Curve Cryptograph(WHCC)of the secure data transmission in the 6G network with the blockchain model.The data transmission within the computer vision system,with a 6G gradient directional histogram(GDH),is employed for character estimation.With the deployment of WHCC and GDH in the constructed SE2ERS model,secure communication is achieved for the data transmission with the 6G network.The proposed SE2ERS compares the performance of traditional Chinese text recognition methods and data transmission environment with 6G communication.Experimental results demonstrate that SE2ERS achieves an average recognition accuracy of 88%for simple Chinese characters,compared to 81.2%with traditional methods.For complex Chinese characters,the average recognition accuracy improves to 84.4%with our system,compared to 72.8%with traditional methods.Additionally,deploying the WHCC model improves data security with the increased data encryption rate complexity of∼12&higher than the traditional techniques.
文摘The classification for handwritten Chinese character recognition can be viewed as a transformation in discrete vector space. In this paper, from the point of discrete vector space transformation, a new 4-corner codes classifier based on decision tree inductive learning algorithm ID3 for handwritten Chinese characters is presented. With a feature extraction controller, the classifier can reduce the number of extracted features and accelerate classification speed. Experimental results show that the 4-corner codes classifier performs well on both recognition accuracy and speed.
基金supported by a grant from Ministry of Education,Taiwan,China under the Aiming for the Top University Plan at Taiwan Normal University,China
文摘Embodied semantics theory asserts that the meaning of action-related words is neurally represented through networks that overlap with or are identical to networks involved in sensory-motor processing. While some studies supporting this theory have focused on Chinese characters, less attention has been paid to their semantic radicals. Indeed, there is still disagreement about whether these radicals are processed independently. The present study investigated whether radicals are processed separately and, if so, whether this processing occurs in sensory-motor regions. Materials consisted of 72 high-frequency Chinese characters, with 18 in each of four categories: hand-action verbs with and without hand-radicals, and verbs not related to hand actions, with and without hand-radicals. Twenty-eight participants underwent functional MRI scans while reading the characters. Compared to characters without hand-radicals, reading characters with hand-radicals activated the right medial frontal gyrus. Verbs involving hand-action activated the left inferior parietal lobule, possibly reflecting integration of information in the radical with the semantic meaning of the verb. The findings may be consistent with embodied semantics theory and suggest that neural representation of radicals is indispensable in processing Chinese characters.