Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation...Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.展开更多
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur...Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.展开更多
On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic fi...On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.展开更多
Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is consid...Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.展开更多
Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtai...Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.展开更多
The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagn...The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.展开更多
BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation...BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.展开更多
Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by co...Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.展开更多
Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired eli...Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.展开更多
In 2000,the small bowel capsule revolutionized the management of patients with small bowel disorders.Currently,the technological development achieved by the new models of double-headed endoscopic capsules,as miniaturi...In 2000,the small bowel capsule revolutionized the management of patients with small bowel disorders.Currently,the technological development achieved by the new models of double-headed endoscopic capsules,as miniaturized devices to evaluate the small bowel and colon[pan-intestinal capsule endoscopy(PCE)],makes this non-invasive procedure a disruptive concept for the management of patients with digestive disorders.This technology is expected to identify which patients will require conventional invasive endoscopic procedures(colonoscopy or balloon-assisted enteroscopy),based on the lesions detected by the capsule,i.e.,those with an indication for biopsies or endoscopic treatment.The use of PCE in patients with inflammatory bowel diseases,namely Crohn’s disease,as well as in patients with iron deficiency anaemia and/or overt gastrointestinal(GI)bleeding,after a non-diagnostic upper endoscopy(esophagogastroduodenoscopy),enables an effective,safe and comfortable way to identify patients with relevant lesions,who should undergo subsequent invasive endoscopic procedures.The recent development of magnetically controlled capsule endoscopy to evaluate the upper GI tract,is a further step towards the possibility of an entirely non-invasive assessment of all the segments of the digestive tract,from mouth-to-anus,meeting the expectations of the early developers of capsule endoscopy.展开更多
The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin pl...The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.展开更多
In view of the fact that the existing methods of measuring bubble propertiesare difficult to be realized in magnetic fluidized beds,a new method,the magnetic induc-tive method,has been developed.With the help of this ...In view of the fact that the existing methods of measuring bubble propertiesare difficult to be realized in magnetic fluidized beds,a new method,the magnetic induc-tive method,has been developed.With the help of this method the bubble properties inmagnetic fluidized beds were studied successfully,which concerned mainly with the influ-ence of magnetic intensity,single jet gas flow rate and main fluidizing gas flow rate onbubble frequency,velocity volume and coalescence or splitting.展开更多
Effect of the injected plasma on the effective radius of the magnetic bubble in plasma sail is discussed. Results from solving both the two-dimensional magneto-hydrodynamic(MHD) equations and the magnetic flux conse...Effect of the injected plasma on the effective radius of the magnetic bubble in plasma sail is discussed. Results from solving both the two-dimensional magneto-hydrodynamic(MHD) equations and the magnetic flux conservation equation indicate that the effective radius of the magnetic bubble formed by the pure dipole field is very small, and the rate of the falloff of the magnetic field can be effectively reduced by the inflation of the high-density plasma. The falloff rate of the magnetic field can be r^-1.4. The effective radius of the magnetic bubble can hence be 8.2 km. The effective radius of the magnetic bubble increases about thirty-six times, comparing to the case of the pure dipole field.展开更多
Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have ...Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.展开更多
Magnetic resonance imaging is the gold standard compared other clinical fin-dings.But shear wave elastography technique combined with endoscopic ultra-sound can evaluate the degree of fibrosis of fistula tissue in Cr...Magnetic resonance imaging is the gold standard compared other clinical fin-dings.But shear wave elastography technique combined with endoscopic ultra-sound can evaluate the degree of fibrosis of fistula tissue in Crohn’s disease patients.This topic is highly relevant to the current discourse,especially for It shows a certain degree of innovation and practicality and is worthy of study and popularization.展开更多
基金National Key R&D Program of China(2023YFB3507004)National Natural Science Foundation of China(U21A20148)+2 种基金International Partnership Program of Chinese Academy of Sciences(116134KYSB20210052)Heye Health Technology Chong Ming Project(HYCMP2021010)CASHIPS Director’s Fund(BJPY2021A06)。
文摘Amyloid beta(Aβ)monomers aggregate to form fibrils and amyloid plaques,which are critical mechanisms in the pathogenesis of Alzheimer’s disease(AD).Given the important role of Aβ1-42 aggregation in plaque formation,leading to brain lesions and cognitive impairment,numerous studies have aimed to reduce Aβaggregation and slow AD progression.The diphenylalanine(FF)sequence is critical for amyloid aggregation,and magnetic fields can affect peptide alignment due to the diamagnetic anisotropy of aromatic rings.In this study,we examined the effects of a moderate-intensity rotating magnetic field(RMF)on Aβaggregation and AD pathogenesis.Results indicated that the RMF directly inhibited Aβamyloid fibril formation and reduced Aβ-induced cytotoxicity in neural cells in vitro.Using the AD mouse model APP/PS1,RMF restored motor abilities to healthy control levels and significantly alleviated cognitive impairments,including exploration and spatial and non-spatial memory abilities.Tissue examinations demonstrated that RMF reduced amyloid plaque accumulation,attenuated microglial activation,and reduced oxidative stress in the APP/PS1 mouse brain.These findings suggest that RMF holds considerable potential as a non-invasive,high-penetration physical approach for AD treatment.
基金supported by the Hefei Comprehensive National Science Center Hefei Brain Project(to KW)the National Natural Science Foundation of China,Nos.31970979(to KW),82101498(to XW)the STI2030-Major Projects,No.2021ZD0201800(to PH).
文摘Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations.
文摘On the basis of the ideal gas model, the polarization of charges in the mantle was obtained, a physical and mathematical model was constructed, and estimated calculations of the dipole mode of the Earth’s magnetic field were performed, taking into account the speed of its angular rotation, the parameters of density and temperature, the chemical composition, the ionization potential, the dielectric constant and the percentage of the main chemical compounds of the mantle substance.
基金support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025)support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004)the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200)。
文摘Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
文摘Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach.
文摘The longitudinal wave term within Faraday’s law of electromagnetic induction (Faraday’s law) underwent recovery to ensure its suitability for theoretical derivation of the equation governing longitudinal electromagnetic (LEM) waves. The revised Maxwell’s equations include the crucial parameters being the attenuation time constants of magnetic vortex potential and electric vortex potential generated by external electromagnetic field within the propagation medium. Specific expressions for them are obtained through theoretical analysis. Subsequently, a model for propagating magnetic P-wave generated by the superposition of a left-handed photo and a right-handed photon in a vacuum is formulated based on reevaluated total current law and revised Faraday’s law, covering wave equations, energy equation, as well as propagation mode involving mutual induction and conversion between scalar magnetic field and vortex electric field. Furthermore, through theoretical derivations centered around magnetic P-wave, evidence was presented regarding its ability to absorb huge free energy through the entangled interaction between zero-point vacuum energy field and the torsion field produced by the vortex electric field.
基金Supported by the National Natural Science Foundation of China,No.3206080019 and No.32060182Science and Technology Support Plan of Guizhou Province in China,No.[2020]4Y129Qiannan Prefecture Science and Technology Plan Project,No.[2022]01.
文摘BACKGROUND Alzheimer’s disease(AD)is a serious disease causing human dementia and social problems.The quality of life and prognosis of AD patients have attracted much attention.The role of chronic immune inflammation in the pathogenesis of AD is becoming more and more important.AIM To study the relationship among cognitive dysfunction,abnormal cellular immune function,neuroimaging results and poor prognostic factors in patients.METHODS A retrospective analysis of 62 hospitalized patients clinical diagnosed with AD who were admitted to our hospital from November 2015 to November 2020.Collect cognitive dysfunction performance characteristics,laboratory test data and neuroimaging data from medical records within 24 h of admission,including Mini Mental State Examination Scale score,drawing clock test,blood T lymphocyte subsets,and neutrophils and lymphocyte ratio(NLR),disturbance of consciousness,extrapyramidal symptoms,electroencephalogram(EEG)and head nucleus magnetic spectroscopy(MRS)and other data.Multivariate logistic regression analysis was used to determine independent prog-nostic factors.the modified Rankin scale(mRS)was used to determine whether the prognosis was good.The correlation between drug treatment and prognostic mRS score was tested by the rank sum test.RESULTS Univariate analysis showed that abnormal cellular immune function,extrapyramidal symptoms,obvious disturbance of consciousness,abnormal EEG,increased NLR,abnormal MRS,and complicated pneumonia were related to the poor prognosis of AD patients.Multivariate logistic regression analysis showed that the decrease in the proportion of T lym-phocytes in the blood after abnormal cellular immune function(odd ratio:2.078,95%confidence interval:1.156-3.986,P<0.05)was an independent risk factor for predicting the poor prognosis of AD.The number of days of donepezil treatment to improve cognitive function was negatively correlated with mRS score(r=0.578,P<0.05).CONCLUSION The decrease in the proportion of T lymphocytes may have predictive value for the poor prognosis of AD.It is recommended that the proportion of T lymphocytes<55%is used as the cut-off threshold for predicting the poor prog-nosis of AD.The early and continuous drug treatment is associated with a good prognosis.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51661020,11504149,and 11364024)the Postdoctoral Science Foundation of China(Grant No.2014M560371)the Funds for Distinguished Young Scientists of Lanzhou University of Technology(Grant No.J201304)。
文摘Aiming at the interaction and coalescence of bubbles in gas–liquid two-phase flow, a multi-field coupling model was established to simulate deformation and dynamics of multi-bubble in gas–liquid two-phase flow by coupling magnetic field, phase field, continuity equation, and momentum equation. Using the phase field method to capture the interface of two phases, the geometric deformation and dynamics of a pair of coaxial vertical rising bubbles under the applied uniform magnetic field in the vertical direction were investigated. The correctness of results is verified by mass conservation method and the comparison of the existing results. The results show that the applied uniform magnetic field can effectively shorten the distance between the leading bubble and the trailing bubble, the time of bubbles coalescence, and increase the velocity of bubbles coalescence. Within a certain range, as the intensity of the applied uniform magnetic field increases, the velocity of bubbles coalescence is proportional to the intensity of the magnetic field, and the time of bubbles coalescence is inversely proportional to the intensity of the magnetic field.
基金supported by the National Key R&D Program of China,No.2021YFF0702203(to HYL)the National Natural Science Foundation of China,No.82101323(to TS)Preferred Foundation of Zhejiang Postdoctors,No.ZJ2021152(to TS).
文摘Parkinson’s disease is a common neurodegenerative disorder that is associated with abnormal aggregation and accumulation of neurotoxic proteins,includingα-synuclein,amyloid-β,and tau,in addition to the impaired elimination of these neurotoxic protein.Atypical parkinsonism,which has the same clinical presentation and neuropathology as Parkinson’s disease,expands the disease landscape within the continuum of Parkinson’s disease and related disorders.The glymphatic system is a waste clearance system in the brain,which is responsible for eliminating the neurotoxic proteins from the interstitial fluid.Impairment of the glymphatic system has been proposed as a significant contributor to the development and progression of neurodegenerative disease,as it exacerbates the aggregation of neurotoxic proteins and deteriorates neuronal damage.Therefore,impairment of the glymphatic system could be considered as the final common pathway to neurodegeneration.Previous evidence has provided initial insights into the potential effect of the impaired glymphatic system on Parkinson’s disease and related disorders;however,many unanswered questions remain.This review aims to provide a comprehensive summary of the growing literature on the glymphatic system in Parkinson’s disease and related disorders.The focus of this review is on identifying the manifestations and mechanisms of interplay between the glymphatic system and neurotoxic proteins,including loss of polarization of aquaporin-4 in astrocytic endfeet,sleep and circadian rhythms,neuroinflammation,astrogliosis,and gliosis.This review further delves into the underlying pathophysiology of the glymphatic system in Parkinson’s disease and related disorders,and the potential implications of targeting the glymphatic system as a novel and promising therapeutic strategy.
文摘In 2000,the small bowel capsule revolutionized the management of patients with small bowel disorders.Currently,the technological development achieved by the new models of double-headed endoscopic capsules,as miniaturized devices to evaluate the small bowel and colon[pan-intestinal capsule endoscopy(PCE)],makes this non-invasive procedure a disruptive concept for the management of patients with digestive disorders.This technology is expected to identify which patients will require conventional invasive endoscopic procedures(colonoscopy or balloon-assisted enteroscopy),based on the lesions detected by the capsule,i.e.,those with an indication for biopsies or endoscopic treatment.The use of PCE in patients with inflammatory bowel diseases,namely Crohn’s disease,as well as in patients with iron deficiency anaemia and/or overt gastrointestinal(GI)bleeding,after a non-diagnostic upper endoscopy(esophagogastroduodenoscopy),enables an effective,safe and comfortable way to identify patients with relevant lesions,who should undergo subsequent invasive endoscopic procedures.The recent development of magnetically controlled capsule endoscopy to evaluate the upper GI tract,is a further step towards the possibility of an entirely non-invasive assessment of all the segments of the digestive tract,from mouth-to-anus,meeting the expectations of the early developers of capsule endoscopy.
基金funded by the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Natural Science Research Project of Higher Education Institutions in Anhui Province(2022AH040045)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(2021-YF22).
文摘The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.
文摘In view of the fact that the existing methods of measuring bubble propertiesare difficult to be realized in magnetic fluidized beds,a new method,the magnetic induc-tive method,has been developed.With the help of this method the bubble properties inmagnetic fluidized beds were studied successfully,which concerned mainly with the influ-ence of magnetic intensity,single jet gas flow rate and main fluidizing gas flow rate onbubble frequency,velocity volume and coalescence or splitting.
基金supported by National Natural Science Foundation of China (No. 10975136)
文摘Effect of the injected plasma on the effective radius of the magnetic bubble in plasma sail is discussed. Results from solving both the two-dimensional magneto-hydrodynamic(MHD) equations and the magnetic flux conservation equation indicate that the effective radius of the magnetic bubble formed by the pure dipole field is very small, and the rate of the falloff of the magnetic field can be effectively reduced by the inflation of the high-density plasma. The falloff rate of the magnetic field can be r^-1.4. The effective radius of the magnetic bubble can hence be 8.2 km. The effective radius of the magnetic bubble increases about thirty-six times, comparing to the case of the pure dipole field.
文摘Understanding the neural underpinning of human gait and balance is one of the most pertinent challenges for 21st-century translational neuroscience due to the profound impact that falls and mobility disturbances have on our aging population.Posture and gait control does not happen automatically,as previously believed,but rather requires continuous involvement of central nervous mechanisms.To effectively exert control over the body,the brain must integrate multiple streams of sensory information,including visual,vestibular,and somatosensory signals.The mechanisms which underpin the integration of these multisensory signals are the principal topic of the present work.Existing multisensory integration theories focus on how failure of cognitive processes thought to be involved in multisensory integration leads to falls in older adults.Insufficient emphasis,however,has been placed on specific contributions of individual sensory modalities to multisensory integration processes and cross-modal interactions that occur between the sensory modalities in relation to gait and balance.In the present work,we review the contributions of somatosensory,visual,and vestibular modalities,along with their multisensory intersections to gait and balance in older adults and patients with Parkinson’s disease.We also review evidence of vestibular contributions to multisensory temporal binding windows,previously shown to be highly pertinent to fall risk in older adults.Lastly,we relate multisensory vestibular mechanisms to potential neural substrates,both at the level of neurobiology(concerning positron emission tomography imaging)and at the level of electrophysiology(concerning electroencephalography).We hope that this integrative review,drawing influence across multiple subdisciplines of neuroscience,paves the way for novel research directions and therapeutic neuromodulatory approaches,to improve the lives of older adults and patients with neurodegenerative diseases.
文摘Magnetic resonance imaging is the gold standard compared other clinical fin-dings.But shear wave elastography technique combined with endoscopic ultra-sound can evaluate the degree of fibrosis of fistula tissue in Crohn’s disease patients.This topic is highly relevant to the current discourse,especially for It shows a certain degree of innovation and practicality and is worthy of study and popularization.