The problem of robust design is treated as a multi-objective optimization issue in which the performance mean and variation are optimized and minimized respectively, while maintaining the feasibility of design constra...The problem of robust design is treated as a multi-objective optimization issue in which the performance mean and variation are optimized and minimized respectively, while maintaining the feasibility of design constraints under uncertainty. To effectively address this issue in robust design, this paper presents a novel robust optimization approach which integrates multi-objective optimization concepts with Taguchi’s crossed arrays techniques. In this approach, Pareto-optimal robust design solution sets are obtained with the aid of design of experiment set-ups, which utilize the results of Analysis of Variance to quantify relative dominance and significance of design variables. A beam design problem is used to illustrate the effectiveness of the proposed approach.展开更多
The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposi...The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposition (EPD) technique. The essential deposition parameters were identified as l) the deposition time, 2) the deposition voltage, 3) the mass fraction of CNTs in suspension, and 4) the distance between the electrodes. An experimental design was then performed to establish the appropriate levels for each factor. An orthogonal array of L9 (34) was designed to conduct the experiments. Electrical conductivity results were collected as the response. The relative influences of design parameters on the response were discussed. Using the model, signal to noise (S/N) ratio and response characteristics for the optimized deposition parameter combination were predicted. The results show clearly that the optimum condition of electrophoretic deposition (EPD) process improves the electrical conductivity of carbon/epoxy hybrid composites.展开更多
In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the qu...In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.展开更多
基金Supported by National High-Tech. R&D Program for CIMS of China (2002AA413520) National Fundamental Research Program (973) of China (2003CB716207).
文摘The problem of robust design is treated as a multi-objective optimization issue in which the performance mean and variation are optimized and minimized respectively, while maintaining the feasibility of design constraints under uncertainty. To effectively address this issue in robust design, this paper presents a novel robust optimization approach which integrates multi-objective optimization concepts with Taguchi’s crossed arrays techniques. In this approach, Pareto-optimal robust design solution sets are obtained with the aid of design of experiment set-ups, which utilize the results of Analysis of Variance to quantify relative dominance and significance of design variables. A beam design problem is used to illustrate the effectiveness of the proposed approach.
基金Project supported by the Second Stage of Brain Korea 21 Projects and the National Research Foundation of Korea (2011-0030804) Funded by the Korea Government (MEST)
文摘The effectiveness of optimizing electrical conductivity of carbon fiber/carbon nanotube (CNT)/epoxy hybrid composites via Taguchi method was demonstrated. CNTs were induced on carbon fabric by electrophoretic deposition (EPD) technique. The essential deposition parameters were identified as l) the deposition time, 2) the deposition voltage, 3) the mass fraction of CNTs in suspension, and 4) the distance between the electrodes. An experimental design was then performed to establish the appropriate levels for each factor. An orthogonal array of L9 (34) was designed to conduct the experiments. Electrical conductivity results were collected as the response. The relative influences of design parameters on the response were discussed. Using the model, signal to noise (S/N) ratio and response characteristics for the optimized deposition parameter combination were predicted. The results show clearly that the optimum condition of electrophoretic deposition (EPD) process improves the electrical conductivity of carbon/epoxy hybrid composites.
文摘In this paper, a quantitative analysis of the opening quality in friction spinning and its main ef-fecting factors is first made. Upon this basis the Box-Hunter’s experimental design method is usedto establish the quadratic regressional equations in terms of primary opening technologicalparameters and yarn quality for medium and fine count friction spinning. The results of analysisand discussion show that the proper choice of opening roller speed and its reasonable match withthe yarn count is singificant for ensuring the spinning quality index as well as reducing unevenness,thin and thick places of the yarn.