The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N...The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.展开更多
Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar ene...Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.展开更多
A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numeri...A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.展开更多
This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the conditi...This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.展开更多
The classical Green’s functions used in the literature for a heat source in a homogeneous elastic medium cannot lead to ?nite remote thermal stresses in the medium,so that they may not work well in practical thermal ...The classical Green’s functions used in the literature for a heat source in a homogeneous elastic medium cannot lead to ?nite remote thermal stresses in the medium,so that they may not work well in practical thermal stress analyses. In this paper, we develop a practical Green’s function for a heat source disposed eccentrically into an elastic disk/cylinder subject to plane deformation. The edge of the disk/cylinder is assumed to be thermally permeable and traction-free. The full thermal stress ?eld induced by the heat source in the disk/cylinder is determined exactly and explicitly via the Cauchy integral techniques. In particular, a very simple formula is obtained to describe the hoop thermal stress on the edge of the disk/cylinder, which may be conveniently useful for analyzing the thermal stresses in microelectronic components.展开更多
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func...Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.展开更多
Energy piles have attracted increasing interest for application in ground source heat pumps,because it is environment-friendly,energy-efficient,and without additional drilling cost.However,when there is a large dif-fe...Energy piles have attracted increasing interest for application in ground source heat pumps,because it is environment-friendly,energy-efficient,and without additional drilling cost.However,when there is a large dif-ference between the heating and cooling loads,the system will suffer from a soil thermal imbalance which may further decline the system performance and even cause a system failure.A hybrid ground source heat pump sys-tem that integrates auxiliary equipment can solve the problem,however,it needs additional investment and a complicated control strategy.In this paper,the zoning operation of energy piles can effectively improve the tem-perature recovery ability of soil in the energy pile group and thus alleviate the soil thermal imbalance.Specifically,a heating-dominated residential building in Beijing is selected for a case study,with 144 energy piles arranged in a 12×12 layout.An analytical model of the spiral-coil energy pile group with seepage will be adopted,which can consider the groundwater flow,the geometry of spiral coils,and the thermal interaction among different energy piles,achieving high calculation accuracy and fast calculation speed.Based on this analytical energy pile model,a system model will be built to investigate the system performance influenced by different zoning operation strategies.Results show that intensive heat injection into the center of the pile group(Strategy 2 and Strategy 3)or heat extraction from the outer layer of the pile group(Strategy 4)can relieve the cold accumulation.Strategy 2 can relieve the outlet temperature decline from 5.54℃ to 4.46℃ and improve the heating COP from 3.297 to 3.423 compared to the conventional full operation strategy.Although the annual heat pump COP of Strategy 2 is a little lower than that of conventional full operation strategy,Strategy 2 has the shortest unmet heating or cooling time.Therefore,the proposed zoning operation strategy can achieve good system efficiency and excellent system reliability compared to the conventional strategy.展开更多
Metal smelting have brought severe metal(loid)s contamination to the soil.Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied.The results showed that...Metal smelting have brought severe metal(loid)s contamination to the soil.Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied.The results showed that soil was contaminated heavily withmetal(loid)s.The mean of lead(Pb),arsenic(As),cadmium(Cd),mercury(Hg)and antimony(Sb)content in topsoil is 9.7,8.2,5.0,2.3,and 1.2 times higher than the risk screening value for soil contamination of development land of China(GB36600-2018),respectively.Cd ismainly enriched in the 0–6mdepth of site soil while As and Pbmainly deposited in the 0–4mlayer.The spatial distribution of soil metal(loid)s is significantly correlated with the pollution source in the different functional areas of smelter.As,Hg,Sb,Pb and copper(Cu)were mainly distributed in pyrometallurgical area,while Cd,thallium(Tl)and zinc(Zn)was mainly existed in both hydrometallurgical area and raw material storage area.Soil metal(loid)s pollution sources in the abandoned smelter are mainly contributed to the anthropogenic sources,accounting for 84.5%.Specifically,Pb,Tl,As,Hg,Sb and Cumainly from atmospheric deposition(55.9%),Cd and Zn mainly from surface runoff(28.6%),While nickel(Ni)mainly comes from parent material(15.5%).The results clarified the spatial distribution and their sources in different functional areas of the smelter,providing a new thought for the risk prevention and control of metal(loid)s in polluted site soil.展开更多
基金supported by the Open Research Fund of TPESER(Grant No.TPESER202205)the Second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0101)。
文摘The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC.
基金Project(GC06A316) supported by the Key Technologies Research and Development Program of Heilongjiang Province, China Project(11531038) supported by the Program of the Educational Commission of Heilongjiang Province of China.
文摘Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year's running. It is beneficial for the system to operate for long period.
基金Supported by Tianjin Scientific Development Foundation (No.013112811-1) .
文摘A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis.
文摘This paper uses FLUENT software building the three-dimensional unsteady state model of ground source heat pump single U and double U underground pipe to study on heat exchange of underground pipe system in the condition of unsteady state long-term continuous running, analyzes the change of soil temperature filed around underground pipe and performance of underground pipe heat exchange between single U and double U pipe system. The results show that double U pipe system is better than single U system, which can improve unit depth heat exchange efficiency, reduce the number of wells and reduce the initial investment.
基金the National Natural Science Foundation of China(No.11902147)the Natural Science Foundation of Jiangsu Province of China(No.BK20190393)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions。
文摘The classical Green’s functions used in the literature for a heat source in a homogeneous elastic medium cannot lead to ?nite remote thermal stresses in the medium,so that they may not work well in practical thermal stress analyses. In this paper, we develop a practical Green’s function for a heat source disposed eccentrically into an elastic disk/cylinder subject to plane deformation. The edge of the disk/cylinder is assumed to be thermally permeable and traction-free. The full thermal stress ?eld induced by the heat source in the disk/cylinder is determined exactly and explicitly via the Cauchy integral techniques. In particular, a very simple formula is obtained to describe the hoop thermal stress on the edge of the disk/cylinder, which may be conveniently useful for analyzing the thermal stresses in microelectronic components.
基金Project supported by the National Natural Science Foundation of China (No. 50776097)
文摘Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.
基金The authors gratefully acknowledge the funding support from Sun Yat-Sen University(76140-18841230 and 2021qntd15)Guangdong Basic and Applied Basic Research Foundation(2021A1515011739,2020A1515110391 and 2020B1515120083).
文摘Energy piles have attracted increasing interest for application in ground source heat pumps,because it is environment-friendly,energy-efficient,and without additional drilling cost.However,when there is a large dif-ference between the heating and cooling loads,the system will suffer from a soil thermal imbalance which may further decline the system performance and even cause a system failure.A hybrid ground source heat pump sys-tem that integrates auxiliary equipment can solve the problem,however,it needs additional investment and a complicated control strategy.In this paper,the zoning operation of energy piles can effectively improve the tem-perature recovery ability of soil in the energy pile group and thus alleviate the soil thermal imbalance.Specifically,a heating-dominated residential building in Beijing is selected for a case study,with 144 energy piles arranged in a 12×12 layout.An analytical model of the spiral-coil energy pile group with seepage will be adopted,which can consider the groundwater flow,the geometry of spiral coils,and the thermal interaction among different energy piles,achieving high calculation accuracy and fast calculation speed.Based on this analytical energy pile model,a system model will be built to investigate the system performance influenced by different zoning operation strategies.Results show that intensive heat injection into the center of the pile group(Strategy 2 and Strategy 3)or heat extraction from the outer layer of the pile group(Strategy 4)can relieve the cold accumulation.Strategy 2 can relieve the outlet temperature decline from 5.54℃ to 4.46℃ and improve the heating COP from 3.297 to 3.423 compared to the conventional full operation strategy.Although the annual heat pump COP of Strategy 2 is a little lower than that of conventional full operation strategy,Strategy 2 has the shortest unmet heating or cooling time.Therefore,the proposed zoning operation strategy can achieve good system efficiency and excellent system reliability compared to the conventional strategy.
基金supported by the National Key Research and Development Program,China(No.2018YFC1800400).
文摘Metal smelting have brought severe metal(loid)s contamination to the soil.Spatial distribution and pollution source analysis for soil metal(loid)s in an abandoned lead/zinc smelter were studied.The results showed that soil was contaminated heavily withmetal(loid)s.The mean of lead(Pb),arsenic(As),cadmium(Cd),mercury(Hg)and antimony(Sb)content in topsoil is 9.7,8.2,5.0,2.3,and 1.2 times higher than the risk screening value for soil contamination of development land of China(GB36600-2018),respectively.Cd ismainly enriched in the 0–6mdepth of site soil while As and Pbmainly deposited in the 0–4mlayer.The spatial distribution of soil metal(loid)s is significantly correlated with the pollution source in the different functional areas of smelter.As,Hg,Sb,Pb and copper(Cu)were mainly distributed in pyrometallurgical area,while Cd,thallium(Tl)and zinc(Zn)was mainly existed in both hydrometallurgical area and raw material storage area.Soil metal(loid)s pollution sources in the abandoned smelter are mainly contributed to the anthropogenic sources,accounting for 84.5%.Specifically,Pb,Tl,As,Hg,Sb and Cumainly from atmospheric deposition(55.9%),Cd and Zn mainly from surface runoff(28.6%),While nickel(Ni)mainly comes from parent material(15.5%).The results clarified the spatial distribution and their sources in different functional areas of the smelter,providing a new thought for the risk prevention and control of metal(loid)s in polluted site soil.