Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Co...We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.展开更多
In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existe...In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.展开更多
The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid...The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.展开更多
In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic ...In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.展开更多
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna...This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.展开更多
This paper introduces Soccer League Competition (SLC) algorithm as a new optimization technique for solving nonlinear systems of equations. Fundamental ideas of the method are inspired from soccer leagues and based on...This paper introduces Soccer League Competition (SLC) algorithm as a new optimization technique for solving nonlinear systems of equations. Fundamental ideas of the method are inspired from soccer leagues and based on the competitions among teams and players. Like other meta-heuristic methods, the proposed technique starts with an initial population. Population individuals called players are in two types: fixed players and substitutes that all together form some teams. The competition among teams to take the possession of the top ranked positions in the league table and the internal competitions between players in each team for personal improvements results in the convergence of population individuals to the global optimum. Results of applying the proposed algorithm in solving nonlinear systems of equations demonstrate that SLC converges to the answer more accurately and rapidly in comparison with other Meta-heuristic and Newton-type methods.展开更多
The exact invariants and the adiabatic invariants of Raitzin's canonical equations of motion for a nonlinear nonholonomic mechanical system are studied. The relations between the invariants and the symmetries of the ...The exact invariants and the adiabatic invariants of Raitzin's canonical equations of motion for a nonlinear nonholonomic mechanical system are studied. The relations between the invariants and the symmetries of the system are established. Based on the concept of higher-order adiabatic invariant of a mechanical system under the action of a small perturbation, the forms of the exact invariants and adiabatic invariants and the conditions for their existence are proved. Finally, the inverse problem of the perturbation to symmetries of the system is studied and an example is also given to illustrate the application of the results.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
This paper presents several new Lyapunov-type inequalities for a system of first-order nonlinear differential equations. Our results generalize and improve some existing ones.
The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a syst...The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.展开更多
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie po...In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.展开更多
The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type ...The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.展开更多
In this paper,we present a column-secant modification of the SCC method,which is called the CSSCC method.The CSSCC method uses function values more efficiently than the SCC method,and it is shown that the CSSCC method...In this paper,we present a column-secant modification of the SCC method,which is called the CSSCC method.The CSSCC method uses function values more efficiently than the SCC method,and it is shown that the CSSCC method has better local q-convergence and r-convergence rates than the SCC method.The numerical results show that the CSSCC method is competitive with some well known methods for some standard test problems.展开更多
This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-t...This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.展开更多
In this paper, a new weak condition for the convergence of secant method to solve the systems of nonlinear equations is proposed. A convergence ball with the center x0 is replaced by that with xl, the first approximat...In this paper, a new weak condition for the convergence of secant method to solve the systems of nonlinear equations is proposed. A convergence ball with the center x0 is replaced by that with xl, the first approximation generated by the secant method with the initial data x-1 and x0. Under the bounded conditions of the divided difference, a convergence theorem is obtained and two examples to illustrate the weakness of convergence conditions are provided. Moreover, the secant method is applied to a system of nonlinear equations to demonstrate the viability and effectiveness of the results in the paper.展开更多
The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obta...The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obtain the asymptotic stability of global solutions by means of a difference inequality.展开更多
According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusi...According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.展开更多
The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions conta...The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.展开更多
This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kut...This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.展开更多
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
基金supported by the NSFC(12261044)the STP of Education Department of Jiangxi Province of China(GJJ210302)。
文摘We find the exact forms of meromorphic solutions of the nonlinear differential equations■,n≥3,k≥1,where q,Q are nonzero polynomials,Q■Const.,and p_(1),p_(2),α_(1),α_(2)are nonzero constants withα_(1)≠α_(2).Compared with previous results on the equation p(z)f^(3)+q(z)f"=-sinα(z)with polynomial coefficients,our results show that the coefficient of the term f^((k))perturbed by multiplying an exponential function will affect the structure of its solutions.
基金supported by the National Natural Science Foundation of China(12071491,12001113)。
文摘In this paper,we consider a class of third-order nonlinear delay dynamic equations.First,we establish a Kiguradze-type lemma and some useful estimates.Second,we give a sufficient and necessary condition for the existence of eventually positive solutions having upper bounds and tending to zero.Third,we obtain new oscillation criteria by employing the Potzsche chain rule.Then,using the generalized Riccati transformation technique and averaging method,we establish the Philos-type oscillation criteria.Surprisingly,the integral value of the Philos-type oscillation criteria,which guarantees that all unbounded solutions oscillate,is greater than θ_(4)(t_(1),T).The results of Theorem 3.5 and Remark 3.6 are novel.Finally,we offer four examples to illustrate our results.
文摘The stability of a set of spatially constant plane wave solutions to a pair of damped coupled nonlinear Schrödinger evolution equations is considered. The equations could model physical phenomena arising in fluid dynamics, fibre optics or electron plasmas. The main result is that any small perturbation to the solution remains small for all time. Here small is interpreted as being both in the supremum sense and the square integrable sense.
基金supported by China Postdoctoral Science Foundation grant 2020TQ0344the NSFC grants 11871139 and 12101597the NSF grants DMS-1720116,DMS-2012882,DMS-2011838,DMS-1719942,DMS-1913072.
文摘In this work,we develop energy stable numerical methods to simulate electromagnetic waves propagating in optical media where the media responses include the linear Lorentz dispersion,the instantaneous nonlinear cubic Kerr response,and the nonlinear delayed Raman molecular vibrational response.Unlike the first-order PDE-ODE governing equations considered previously in Bokil et al.(J Comput Phys 350:420–452,2017)and Lyu et al.(J Sci Comput 89:1–42,2021),a model of mixed-order form is adopted here that consists of the first-order PDE part for Maxwell’s equations coupled with the second-order ODE part(i.e.,the auxiliary differential equations)modeling the linear and nonlinear dispersion in the material.The main contribution is a new numerical strategy to treat the Kerr and Raman nonlinearities to achieve provable energy stability property within a second-order temporal discretization.A nodal discontinuous Galerkin(DG)method is further applied in space for efficiently handling nonlinear terms at the algebraic level,while preserving the energy stability and achieving high-order accuracy.Indeed with d_(E)as the number of the components of the electric field,only a d_(E)×d_(E)nonlinear algebraic system needs to be solved at each interpolation node,and more importantly,all these small nonlinear systems are completely decoupled over one time step,rendering very high parallel efficiency.We evaluate the proposed schemes by comparing them with the methods in Bokil et al.(2017)and Lyu et al.(2021)(implemented in nodal form)regarding the accuracy,computational efficiency,and energy stability,by a parallel scalability study,and also through the simulations of the soliton-like wave propagation in one dimension,as well as the spatial-soliton propagation and two-beam interactions modeled by the two-dimensional transverse electric(TE)mode of the equations.
文摘This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering.
文摘This paper introduces Soccer League Competition (SLC) algorithm as a new optimization technique for solving nonlinear systems of equations. Fundamental ideas of the method are inspired from soccer leagues and based on the competitions among teams and players. Like other meta-heuristic methods, the proposed technique starts with an initial population. Population individuals called players are in two types: fixed players and substitutes that all together form some teams. The competition among teams to take the possession of the top ranked positions in the league table and the internal competitions between players in each team for personal improvements results in the convergence of population individuals to the global optimum. Results of applying the proposed algorithm in solving nonlinear systems of equations demonstrate that SLC converges to the answer more accurately and rapidly in comparison with other Meta-heuristic and Newton-type methods.
基金Project supported by the Heilongjiang Natural Science Foundation of China (Grant No 9507).
文摘The exact invariants and the adiabatic invariants of Raitzin's canonical equations of motion for a nonlinear nonholonomic mechanical system are studied. The relations between the invariants and the symmetries of the system are established. Based on the concept of higher-order adiabatic invariant of a mechanical system under the action of a small perturbation, the forms of the exact invariants and adiabatic invariants and the conditions for their existence are proved. Finally, the inverse problem of the perturbation to symmetries of the system is studied and an example is also given to illustrate the application of the results.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
基金The NSF(41405083,91437220)of Chinathe NSF(2015JJ3098)of Hunan Province of China
文摘This paper presents several new Lyapunov-type inequalities for a system of first-order nonlinear differential equations. Our results generalize and improve some existing ones.
文摘The main goal of this work is to develop an effective technique for solving nonlinear systems of Volterra integral equations. The main tools are the cardinal spline functions on small compact supports. We solve a system of algebra equations to approximate the solution of the system of integral equations. Since the matrix for the algebraic system is nearly triangular, It is relatively painless to solve for the unknowns and an approximation of the original solution with high precision is accomplished. In order to enhance the accuracy, several cardinal splines are employed in the paper. Our schemes were compared with other techniques proposed in recent papers and the advantage of our method was exhibited with several numerical examples.
基金The project supported by National Natural Science Foundation of China under Grant No.10671156the Program for New CenturyExcellent Talents in Universities under Grant No.NCET-04-0968
文摘In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Thosesystems have physical applications in soil science, mathematical biology, and invariant curve flows in R^3. Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
文摘The nonlinear interactions between the monochromatic wave have been considered by K. Matsunchi, who also proposed one class of the nonlinear Schrdinger equation system with wave operator. We also obtain the same type of equations, which are satisfied by transverse velocity of higher frequency electron, as we study soliton in plasma physics. In this paper, under some condition we study the existence and nonexistence for this equations in the cases possessing different signs in nonlinear term.
基金State Major Key Project for Basic Researches in China
文摘In this paper,we present a column-secant modification of the SCC method,which is called the CSSCC method.The CSSCC method uses function values more efficiently than the SCC method,and it is shown that the CSSCC method has better local q-convergence and r-convergence rates than the SCC method.The numerical results show that the CSSCC method is competitive with some well known methods for some standard test problems.
文摘This paper presents a new decomposition method for solving large-scale systems of nonlinear equations. The new method is of superlinear convergence speed and has rather less computa tional complexity than the Newton-type decomposition method as well as other known numerical methods, Primal numerical experiments show the superiority of the new method to the others.
基金Supported by the Qianjiang Rencai Project Foundation of Zhejiang Province (J20070288)
文摘In this paper, a new weak condition for the convergence of secant method to solve the systems of nonlinear equations is proposed. A convergence ball with the center x0 is replaced by that with xl, the first approximation generated by the secant method with the initial data x-1 and x0. Under the bounded conditions of the divided difference, a convergence theorem is obtained and two examples to illustrate the weakness of convergence conditions are provided. Moreover, the secant method is applied to a system of nonlinear equations to demonstrate the viability and effectiveness of the results in the paper.
基金supported by National Natural Science Foundation of China(61273016)The Natural Science Foundation of Zhejiang Province(Y6100016)The Public Welfare Technology Application Research Project of Zhejiang Province Science and Technology Department(2015C33088)
文摘The initial-boundary value problem for a class of nonlinear hyperbolic equations system in bounded domain is studied. The existence of global solutions for this problem is proved by constructing a stable set, and obtain the asymptotic stability of global solutions by means of a difference inequality.
文摘According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.
文摘The homogeneous balance method was improved and applied to two systems Of nonlinear evolution equations. As a result, several families of exact analytic solutions are derived by some new ansatzs. These solutions contain Wang's and Zhang's results and other new types of analytical solutions, such as rational fraction solutions and periodic solutions. The way can also be applied to solve more nonlinear partial differential equations.
文摘This paper presents nonlinear ordinary differential equations (ODES) of the heavier pellets movement for two phase flow, which actually represent a system of equations. The usual methods of solution such as Runge -Kutta method and it's datum results are discussed. This paper solves ODES of general form using variable mesh-length, linearizing the nonlinear terms by finite analysis method, fuilding an iteration sequence, and amending the nonlinear terms by iteration . The conditions of convergent operation of iteration solution is checked. The movement orbit and velocity of the pellets are calculated. Analysis of research results and it's application examples are illustrated.