A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditional...A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditionally permutability of some 2-maximal subgroups of the Sylow subgroup of G, on the structure of finite groups. New criteria for a group G being p-nilpotent are obtained.展开更多
A subgroup H of a group G is called s-conditionally permutable in G if for every Sylow subgroup T of G there exists an element x ∈ G such that HTx = TxH. Using the concept of s-conditionally permutable subgroups, som...A subgroup H of a group G is called s-conditionally permutable in G if for every Sylow subgroup T of G there exists an element x ∈ G such that HTx = TxH. Using the concept of s-conditionally permutable subgroups, some new characterizations of finite groups are obtained and several interesting results are generalized.展开更多
Let G be a finite group. Fix a prime divisor p of IGI and a Sylow p-subgroup P of G, let d be the smallest generator number of P and Ma(P) denote a family of maximal subgroups P1, P2 , Pd of P satisfying ∩^di=1 Pi...Let G be a finite group. Fix a prime divisor p of IGI and a Sylow p-subgroup P of G, let d be the smallest generator number of P and Ma(P) denote a family of maximal subgroups P1, P2 , Pd of P satisfying ∩^di=1 Pi = Ф(P), the Frattini subgroup of P. In this paper, we shall investigate the influence of s-conditional permutability of the members of some fixed .Md(P) on the structure of finite groups. Some new results are obtained and some known results are generalized.展开更多
基金The Scientific Research Foundation of Sichuan Provincial Education Department of China(No.08zb082)
文摘A subgroup H of G is called s-conditionally permutable in G if for every Sylow subgroup T of G, there exists an element x ∈ G such that HTK = T^KH. In this paper, we investigate further the influence of s-conditionally permutability of some 2-maximal subgroups of the Sylow subgroup of G, on the structure of finite groups. New criteria for a group G being p-nilpotent are obtained.
基金supported by National Natural Science Foundation of China (Grant No. 10771180)Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 08zb059)Research Programme of Chengdu University of Information Technology
文摘A subgroup H of a group G is called s-conditionally permutable in G if for every Sylow subgroup T of G there exists an element x ∈ G such that HTx = TxH. Using the concept of s-conditionally permutable subgroups, some new characterizations of finite groups are obtained and several interesting results are generalized.
基金Supported by the National Natural Science Foundation of China (Grant No.11071229)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.10KJD110004)the Postgraduate Innovation Grant of Xuzhou Normal University
文摘Let G be a finite group. Fix a prime divisor p of IGI and a Sylow p-subgroup P of G, let d be the smallest generator number of P and Ma(P) denote a family of maximal subgroups P1, P2 , Pd of P satisfying ∩^di=1 Pi = Ф(P), the Frattini subgroup of P. In this paper, we shall investigate the influence of s-conditional permutability of the members of some fixed .Md(P) on the structure of finite groups. Some new results are obtained and some known results are generalized.