针对传统模数转换器(analog to digital convertor,ADC)设计复杂度高、仿真迭代时间长的问题,提出了一种高精度ADC系统设计与建模方法。该方法以10 bit 50 MHz流水线ADC为例,首先选取分离采样架构,进行电路的s域变换理论分析;其次对电...针对传统模数转换器(analog to digital convertor,ADC)设计复杂度高、仿真迭代时间长的问题,提出了一种高精度ADC系统设计与建模方法。该方法以10 bit 50 MHz流水线ADC为例,首先选取分离采样架构,进行电路的s域变换理论分析;其次对电路中各种非理想噪声的表达式进行精确推导,根据系统中的运放功耗指标进行参数优化;最后分别在MATLAB和Cadence软件中建立模型,进行100点蒙特卡洛仿真。仿真结果表明,在TSMC 180 nm工艺失配下,该流水线ADC有效位数达到9.70 bit,无杂散动态范围维持在76 dB附近,微分非线性在0.3 LSB以内,积分非线性在0.5 LSB以内,核心功耗在8 mW,该分析方法在保证流水线ADC优异性能的同时,大幅提高了设计效率。展开更多
【目的】由于天然孔隙介质中存在物理化学非均质性,在这种复杂的非均质性含水层中,以往的现场试验数据显示溶质在非均质介质运移过程中无法用菲克扩散定律对流弥散方程(Advection-Dispersion Equation,ADE)来描述。本研究采用高密度电...【目的】由于天然孔隙介质中存在物理化学非均质性,在这种复杂的非均质性含水层中,以往的现场试验数据显示溶质在非均质介质运移过程中无法用菲克扩散定律对流弥散方程(Advection-Dispersion Equation,ADE)来描述。本研究采用高密度电法证实溶质在非均质介质中非菲克运移。【方法】本研究采用石英砂、沸石两种不同基质构建双重介质物理模型(Models of Dual-Domain Mass Transfer,DDMT),采用高密度电法测定系统ERT21实时检测和采集数据,在实验室利用Nacl溶液开展示踪试验,利用阿尔奇定律分析溶质运移试验研究。【结果】试验结果浓度穿透曲线在后期发生“拖尾”现象;在沸石柱实验中,观察到流体电导率(σ_(f))和体积电导率(σ_(b))之间的滞后现象,这表明流体在不可动领域和可动领域之间的交换。而在沙子柱试验中,未观察到σ_(f)和σ_(b)之间的滞后现象,可以忽略质量传递行为;滞后现象的形状与大小由水动力学特征和基质属性控制,水动力学是影响拖尾时长的因素之一,渗透系数会影响溶质运移的过程。【结论】通过试验观察和地球物理数据分析,直接量化了实验室尺度下的异常质量传递行为,通过地球物理方法测量的导电率(σ_(b))对于移动和不动领域都具有敏感性,从而提供了与标准采样方法相比的独特优势。展开更多
电源网络S参数与芯片电源模型(Chip Power Module,CPM)级联可实现电源时域噪声仿真,完成电源完整性设计签核。当下部分仿真工具在AC阻抗优化过程中导出的S参数存在低频段无法覆盖的问题,影响时域纹波仿真精度,如果重新对S参数进行提取,...电源网络S参数与芯片电源模型(Chip Power Module,CPM)级联可实现电源时域噪声仿真,完成电源完整性设计签核。当下部分仿真工具在AC阻抗优化过程中导出的S参数存在低频段无法覆盖的问题,影响时域纹波仿真精度,如果重新对S参数进行提取,又会增加仿真时间降低仿真效率。针对AC阻抗优化过程中导出的S参数无法覆盖低频段的问题,提出了一种电源网络S参数低频段拓展方法,结合电压调节模块(Voltage Regulator Module,VRM)的R-L模型,推导出低频段的S参数可以借用抽取的S参数中最低频点处的S参数实现低频段S参数的拓展。仿真和实验结果表明,通过对低频段S参数进行拓展,电源时域纹波噪声仿真的精度提升31%。同时,低频段的S参数直接借用已抽取的S参数中低频点的数值无须重复提取,在8 GB内存的配置下,仿真时间节约14%左右,提高了仿真效率。展开更多
A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between th...A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.展开更多
文摘针对传统模数转换器(analog to digital convertor,ADC)设计复杂度高、仿真迭代时间长的问题,提出了一种高精度ADC系统设计与建模方法。该方法以10 bit 50 MHz流水线ADC为例,首先选取分离采样架构,进行电路的s域变换理论分析;其次对电路中各种非理想噪声的表达式进行精确推导,根据系统中的运放功耗指标进行参数优化;最后分别在MATLAB和Cadence软件中建立模型,进行100点蒙特卡洛仿真。仿真结果表明,在TSMC 180 nm工艺失配下,该流水线ADC有效位数达到9.70 bit,无杂散动态范围维持在76 dB附近,微分非线性在0.3 LSB以内,积分非线性在0.5 LSB以内,核心功耗在8 mW,该分析方法在保证流水线ADC优异性能的同时,大幅提高了设计效率。
文摘【目的】由于天然孔隙介质中存在物理化学非均质性,在这种复杂的非均质性含水层中,以往的现场试验数据显示溶质在非均质介质运移过程中无法用菲克扩散定律对流弥散方程(Advection-Dispersion Equation,ADE)来描述。本研究采用高密度电法证实溶质在非均质介质中非菲克运移。【方法】本研究采用石英砂、沸石两种不同基质构建双重介质物理模型(Models of Dual-Domain Mass Transfer,DDMT),采用高密度电法测定系统ERT21实时检测和采集数据,在实验室利用Nacl溶液开展示踪试验,利用阿尔奇定律分析溶质运移试验研究。【结果】试验结果浓度穿透曲线在后期发生“拖尾”现象;在沸石柱实验中,观察到流体电导率(σ_(f))和体积电导率(σ_(b))之间的滞后现象,这表明流体在不可动领域和可动领域之间的交换。而在沙子柱试验中,未观察到σ_(f)和σ_(b)之间的滞后现象,可以忽略质量传递行为;滞后现象的形状与大小由水动力学特征和基质属性控制,水动力学是影响拖尾时长的因素之一,渗透系数会影响溶质运移的过程。【结论】通过试验观察和地球物理数据分析,直接量化了实验室尺度下的异常质量传递行为,通过地球物理方法测量的导电率(σ_(b))对于移动和不动领域都具有敏感性,从而提供了与标准采样方法相比的独特优势。
文摘A complete closed-loop third order s-domain model is analyzed for a frequency synthesizer. Based on the model and root-locus technique, the procedure for parameters design is described, and the relationship between the process,voltage,and temperature variation of parameters and the loop stability is quantitatively analyzed. A variation margin is proposed for stability compensation. Furthermore,a simple adjustable current cell in the charge pump is proposed for additional stability compensation and a novel VCO with linear gain is adopted to limit the total variation. A fully integrated frequency synthesizer from 1 to 1.05GHz with 250kHz channel resolution is implemented to verify the methods.