Heat exchanger is an important equipment used in process industries for cooling and heating purposes. Its design configuration which involves the flow of cold and hot fluids within the exchanger subjects it to corrosi...Heat exchanger is an important equipment used in process industries for cooling and heating purposes. Its design configuration which involves the flow of cold and hot fluids within the exchanger subjects it to corrosion attack. The article utilized the principle of mass and energy conservation in the development of weight and temperature models to study the effect of corrosion on mild steel coupon inside the exchanger containing water and Mono ethanol amine (MEA). The models developed were resolved analytically using Laplace Transform and simulated using Excel as simulation tool and data obtained from experiment in the laboratory to obtain profiles of weight loss and temperature as a function of time. The weight loss and performance of mild steel under various corrosive conditions were examined which indicates the effect of corrosion on the mild steel heat exchanger in water and MEA media. The result shows that water is more corrosive than MEA at higher temperatures and at lower temperatures of 35°C and 1 atm, MEA has inhibitive properties than water as indicated by the weight loss result with time. The comparative analysis between the results obtained from the model simulation and experimental results shows that the result obtained from the model is more reliable and demonstrated better performance characteristics as it clearly shows mild steel heat exchanger experiences more corrosive effect in water medium than MEA at higher temperatures. And at lower temperatures, MEA becomes more inhibitive and less corrosive than water. The model simulation results correlate with various literatures and hence, it is valid for future referencing.展开更多
Exchange bias effect is observed in the phase separated La0.33Pr0.34Ca0.33MnO3 thin films. High exchange bias field of about 1 kOe is achieved at 4 K. The exchange bias effect in La0.33Pr0.34Ca0.33MnO3 thin films migh...Exchange bias effect is observed in the phase separated La0.33Pr0.34Ca0.33MnO3 thin films. High exchange bias field of about 1 kOe is achieved at 4 K. The exchange bias effect in La0.33Pr0.34Ca0.33MnO3 thin films might originate from the intrinsic phase separation of the La0.33Pr0.34Ca0.33MnO3 or surface effect. The dependence of exchange bias effect on temperature, cooling field, and thickness is also investigated. This work would open an avenue to the application in the magnetic memory devices based on the phase separated manganites.展开更多
The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of org...The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.展开更多
This article consists of an analytical solution for obtaining the outlet temperatures of the hot and cold fluids in a shell and tube heat exchanger. The system analyzed through the concepts of efficiency, effectivenes...This article consists of an analytical solution for obtaining the outlet temperatures of the hot and cold fluids in a shell and tube heat exchanger. The system analyzed through the concepts of efficiency, effectiveness (<em>ε</em>-<em>NTU</em>), and irreversibility consisted of a shell and tube heat exchanger, with cold nanofluid flowing in the shell and hot water flowing in the tube. The nanofluid consists of 50% of ethylene glycol and water as the base fluid and copper oxide (CuO) nanoparticles in suspension. The volume fractions of the nanoparticles range from 0.1 to 0.5. The flow rate in the nanofluid ranges from 0.0331 to 0.0568 Kg/s, while two mass flow rates, from 0.0568 and 0.5 Kg/s, for the hot fluid, are used as parameters for analysis. Results for the efficiency, effectiveness, irreversibility, heat transfer rate, and outlet temperatures for cold and hot fluids were obtained graphically. The flow laminarization effect was observed through the results obtained and had significant relevance in the results.展开更多
Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configurat...Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.展开更多
The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube he...The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube heat exchanger, within a time interval, without that the crystallization of the <i>ANSOL</i> solution occurs. The desired production per batch of the solution is 5750 kg in 80 minutes. The analysis uses the concepts of efficiency and effectiveness to determine the heat transfer rate and temperature profiles that satisfy the imposed condition within a certain degree of safety and with the lowest possible cost in steam generation. Intermediate quantities necessary to reach the objective are the Reynolds number, Nusselt number, and global heat transfer coefficient for the shell and helical coil tube heat exchanger. Initially, the water is heated for a specified period and, subsequently, the ammonium nitrate is added to a given flow in a fixed mass flow rate.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat...This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.展开更多
A single-phase iron oxideBa0.8Sr0.2FeO3-δwith a simple cubic perovskite structure in Pm-3 m symmetry is successfully synthesized by a solid-state reaction method in O2 flow. The oxygen content is determined to be abo...A single-phase iron oxideBa0.8Sr0.2FeO3-δwith a simple cubic perovskite structure in Pm-3 m symmetry is successfully synthesized by a solid-state reaction method in O2 flow. The oxygen content is determined to be about 2.81, indicating the formation of mixed Fe3+and Fe4+charge states with a disorder fashion. As a result, the compound shows small-polaron conductivity behavior, as well as spin glassy features arising from the competition between the ferromagnetic interaction and the antiferromagnetic interaction. Moreover, the competing interactions also give rise to a remarkable exchange bias effect in Ba0.8 Sr0.2 FeO2.81, providing an opportunity to use it in spin devices.展开更多
The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous...The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h.展开更多
A significant exchange bias (EB) traimng ettect has been observea in sputter deposited FeAu/FeNi bilayers, wherein the exchange field (HE) exhibits a special sign-changeable temperature dependence. Very interestin...A significant exchange bias (EB) traimng ettect has been observea in sputter deposited FeAu/FeNi bilayers, wherein the exchange field (HE) exhibits a special sign-changeable temperature dependence. Very interestingly, despite the absence of multiple easy axes in the FeAu spin glass (SG) layer, HE drops abruptly between the first and second magnetic cycles, which is followed by a more gradual continuous change in the subsequent cycles. This training behavior cannot be described by the empirical n-1/2 law because of the asymmetric magnetization reversal processes. We propose modifying Binek's model to include the asymmetric changes of the pinning SG spins at the descending and ascending branches. This new model successfully describes the EB training effect in FeAu/FeNi bilayers.展开更多
The ligand exchange reaction is a typical reaction of ferrocenes. This reaction proceeds via the abstraction of a cyclopentadienyl ring by a Lewis acid followed by coordination of an aromatic compound to the resulting...The ligand exchange reaction is a typical reaction of ferrocenes. This reaction proceeds via the abstraction of a cyclopentadienyl ring by a Lewis acid followed by coordination of an aromatic compound to the resulting species. This reaction with conventional heating requires a long reaction time. Furthermore, the reactions with heterocycles are lower than those with the corresponding hydrocarbons, and do not produce any products in some cases. In this paper, the ligand exchange reaction of ferrocene and a heterocyclic aromatic compound during microwave irradiation and its effect are discussed. As a result, for some heterocycles, the decrease in the reaction time was confirmed. Furthermore, under the microwave irradiation conditions, the tendency in which the difference in their reactivities became low was confirmed.展开更多
The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exch...The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exchange.展开更多
With the rapid expansion of the RMB exchange rate’s floating range,the effects of the RMB exchange rate and global commodity price changes on China’s stock prices are likely to increase.This study uses both auto reg...With the rapid expansion of the RMB exchange rate’s floating range,the effects of the RMB exchange rate and global commodity price changes on China’s stock prices are likely to increase.This study uses both auto regressive distributed lag(ARDL)and nonlinear ARDL(NARDL)approaches to explore the symmetric and asymmetric effects of the RMB exchange rate and global commodity prices on China’s stock prices.Our findings show that without considering the critical variable of global commodity prices,there is no cointegration relationship between the RMB exchange rate and China’s stock prices,and the coefficient of the RMB exchange rate is not statistically significant.However,when we introduce global commodity prices into the NARDL model,the result shows that the RMB exchange rate has a negative effect on China’s stock prices,that there indeed exists a long-run cointegration relationship among the RMB exchange rate,global commodity prices,and stock prices in the NARDL model,and that global commodity price changes have an asymmetric effect on China’s stock prices in the long run.Specifically,China’s stock prices are more sensitive to increases than decreases in global commodity prices.Thus,increases in global commodity prices cause China’s stock prices to decline sharply.In contrast,the same magnitude of decline in global commodity prices induces a smaller increase in China’s stock prices.展开更多
By generalizing the isotope effect for elemental superconductors (SCs) to the case of pairing in the 2-phonon exchange mechanism for composite SCs, we give here an explanation of the well-known increase in the critica...By generalizing the isotope effect for elemental superconductors (SCs) to the case of pairing in the 2-phonon exchange mechanism for composite SCs, we give here an explanation of the well-known increase in the critical temperature (Tc) of Bi2Sr2CaCu2O8 from 95 K to 110 K and of Bi2Sr2Ca2Cu3O10 from 105 to 115 - 125 K when Bi and Sr in these are replaced by Tl and Ba, respectively. On this basis, we also give the estimated Tcs of some hypothetical SCs, assuming that they may be fabricated by substitutions similar to Bi → Tl and Sr → Ba.展开更多
This work aims to establish comparisons between two models used for the performance of heat exchangers. The chosen system, in this case, consists of a heat exchanger used in automotive radiators flat finned tube type....This work aims to establish comparisons between two models used for the performance of heat exchangers. The chosen system, in this case, consists of a heat exchanger used in automotive radiators flat finned tube type. Water and ethylene glycol compound as base fluid and volume fractions of iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>) are used as a refrigerant. The quantities determined in this work are the nanofluid exit temperature, the air exit temperature, the absolute error between the models for heat transfer rate, and Effectiveness. The quantities that constitute parameters, independent variables, are the airflow, represented by the Reynolds number, and the iron oxide volume fraction. Ethylene Glycol 50% compound has slightly better thermal performance than pure water and reduces the reactive effect of water on the environment, increasing the average life of the equipment. The absolute relative error between the models is less than 20% and presents maximum values with the increase of the nanoparticle volume fraction and growth in the Reynolds number for the air.展开更多
An important limitation of the research literatures which study the effect on the export of the real effective exchange rates is the lack of application of interaction or moderator effect among the independent variabl...An important limitation of the research literatures which study the effect on the export of the real effective exchange rates is the lack of application of interaction or moderator effect among the independent variables. To remedy this lacuna, the authors developed a model in which real effective exchange rate moderated the effect of import and utilization of foreign capital on export. The sample comprised 11 years' data in Guangdong China. The result showed that real effective exchange rate of RMB affected the export by interacting with utilization of foreign capital. Moreover, to some degree, the real effective exchange rate can also act as moderator between import and export.展开更多
Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard g...Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.展开更多
文摘Heat exchanger is an important equipment used in process industries for cooling and heating purposes. Its design configuration which involves the flow of cold and hot fluids within the exchanger subjects it to corrosion attack. The article utilized the principle of mass and energy conservation in the development of weight and temperature models to study the effect of corrosion on mild steel coupon inside the exchanger containing water and Mono ethanol amine (MEA). The models developed were resolved analytically using Laplace Transform and simulated using Excel as simulation tool and data obtained from experiment in the laboratory to obtain profiles of weight loss and temperature as a function of time. The weight loss and performance of mild steel under various corrosive conditions were examined which indicates the effect of corrosion on the mild steel heat exchanger in water and MEA media. The result shows that water is more corrosive than MEA at higher temperatures and at lower temperatures of 35°C and 1 atm, MEA has inhibitive properties than water as indicated by the weight loss result with time. The comparative analysis between the results obtained from the model simulation and experimental results shows that the result obtained from the model is more reliable and demonstrated better performance characteristics as it clearly shows mild steel heat exchanger experiences more corrosive effect in water medium than MEA at higher temperatures. And at lower temperatures, MEA becomes more inhibitive and less corrosive than water. The model simulation results correlate with various literatures and hence, it is valid for future referencing.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.11374279 and No.11034006), the National Basic Research Program of China (No.2014CB921102), the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB01020000), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20113402110046), and the Fundamental Research Funds for the Central Universities (No.WK2340000035).
文摘Exchange bias effect is observed in the phase separated La0.33Pr0.34Ca0.33MnO3 thin films. High exchange bias field of about 1 kOe is achieved at 4 K. The exchange bias effect in La0.33Pr0.34Ca0.33MnO3 thin films might originate from the intrinsic phase separation of the La0.33Pr0.34Ca0.33MnO3 or surface effect. The dependence of exchange bias effect on temperature, cooling field, and thickness is also investigated. This work would open an avenue to the application in the magnetic memory devices based on the phase separated manganites.
基金Project supported by the National Natural Science Fund. (Nos. E 85111 and 4890275)
文摘The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.
文摘This article consists of an analytical solution for obtaining the outlet temperatures of the hot and cold fluids in a shell and tube heat exchanger. The system analyzed through the concepts of efficiency, effectiveness (<em>ε</em>-<em>NTU</em>), and irreversibility consisted of a shell and tube heat exchanger, with cold nanofluid flowing in the shell and hot water flowing in the tube. The nanofluid consists of 50% of ethylene glycol and water as the base fluid and copper oxide (CuO) nanoparticles in suspension. The volume fractions of the nanoparticles range from 0.1 to 0.5. The flow rate in the nanofluid ranges from 0.0331 to 0.0568 Kg/s, while two mass flow rates, from 0.0568 and 0.5 Kg/s, for the hot fluid, are used as parameters for analysis. Results for the efficiency, effectiveness, irreversibility, heat transfer rate, and outlet temperatures for cold and hot fluids were obtained graphically. The flow laminarization effect was observed through the results obtained and had significant relevance in the results.
基金Project financially supported by the Second Stage of Brain Korea 21 Projects and Changwon National University,Korea
文摘Thermal performance was the most important factor in the development of borehole heat exchanger utilizing geothermal energy. The thermal performance was affected by many different design parameters, such as configuration type and borehole size of geothermal heat exchanger. These eventually determined the operation and cost efficiency of the geothermal heat exchanger system. The main purpose of this work was to assess the thermal performance of geother^nal heat exchanger with variation of borehole sizes and numbers of U-tubes inside a borehole. For this, a thermal response test rig was established with line-source theory. The thermal response test was performed with in-line variable input heat source. Effective thermal conductivity and thermal resistance were obtained from the measured data. From the measurement, the effective thermal conductivity is found to have similar values for two- pair type (4 U-tubes) and three-pair type (6 U-tubes) borehole heat exchanger systems indicating similar heat transfer ability. Meanwhile, the thermal resistance shows lower value for the three-pair type compared to the two-pair type. Measured data based resistance have lower value compared to computed result from design programs. Overall comparison finds better thermal performance for the three-pair type, however, fluctuating temperature variation indicates complex flow behavior inside the borehole and requires further study on flow characteristics.
文摘The case study is about obtaining the flow rate and saturation temperature of steam that makes it possible to heat a solution of water and ammonia nitrate (<i>ANSOL</i>) in a shell and helical coil tube heat exchanger, within a time interval, without that the crystallization of the <i>ANSOL</i> solution occurs. The desired production per batch of the solution is 5750 kg in 80 minutes. The analysis uses the concepts of efficiency and effectiveness to determine the heat transfer rate and temperature profiles that satisfy the imposed condition within a certain degree of safety and with the lowest possible cost in steam generation. Intermediate quantities necessary to reach the objective are the Reynolds number, Nusselt number, and global heat transfer coefficient for the shell and helical coil tube heat exchanger. Initially, the water is heated for a specified period and, subsequently, the ammonium nitrate is added to a given flow in a fixed mass flow rate.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
文摘This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0305700 and 2018YFGH000095)the National Natural Science Foundation of China(Grant Nos.51772324 and 11574378)the Fund from the Chinese Academy of Sciences(Grant No.QYZDB-SSWSLH013,GJHZ1773)
文摘A single-phase iron oxideBa0.8Sr0.2FeO3-δwith a simple cubic perovskite structure in Pm-3 m symmetry is successfully synthesized by a solid-state reaction method in O2 flow. The oxygen content is determined to be about 2.81, indicating the formation of mixed Fe3+and Fe4+charge states with a disorder fashion. As a result, the compound shows small-polaron conductivity behavior, as well as spin glassy features arising from the competition between the ferromagnetic interaction and the antiferromagnetic interaction. Moreover, the competing interactions also give rise to a remarkable exchange bias effect in Ba0.8 Sr0.2 FeO2.81, providing an opportunity to use it in spin devices.
基金This work is financially supported by National Natural Science Foundation of China(52174283 and 52274308)Innovation Fund Project for Graduate Student of China University of Petroleum(East China)(22CX04023A)the Fundamental Research Funds for the Central Universities。
文摘The formation of multiple oxygen intermediates supporting efficient oxygen evolution reaction(OER)are affinitive with hydroxyl adsorption.However,ability of the catalyst to capture hydroxyl and maintain the continuous supply at active sits remains a tremendous challenge.Herein,an affordable Ni2P/FeP2 heterostructure is presented to form the internal polarization field(IPF),arising hydroxyl spillover(HOSo)during OER.Facilitated by IPF,the oriented HOSo from FeP2 to Ni2P can activate the Ni site with a new hydroxyl transmission channel and build the optimized reaction path of oxygen intermediates for lower adsorption energy,boosting the OER activity(242 mV vs.RHE at 100 mA cm-2)for least 100 h.More interestingly,for the anion exchange membrane water electrolyzer(AEMWE)with low concentration electrolyte,the advantage of HOSo effect is significantly amplified,delivering 1 A cm^(-2)at a low cell voltage of 1.88 V with excellent stability for over 50 h.
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB921101 and 2010CB923401)the National Natural Science Foundations of China(Grant Nos.51331004,11074112,and 11174131)
文摘A significant exchange bias (EB) traimng ettect has been observea in sputter deposited FeAu/FeNi bilayers, wherein the exchange field (HE) exhibits a special sign-changeable temperature dependence. Very interestingly, despite the absence of multiple easy axes in the FeAu spin glass (SG) layer, HE drops abruptly between the first and second magnetic cycles, which is followed by a more gradual continuous change in the subsequent cycles. This training behavior cannot be described by the empirical n-1/2 law because of the asymmetric magnetization reversal processes. We propose modifying Binek's model to include the asymmetric changes of the pinning SG spins at the descending and ascending branches. This new model successfully describes the EB training effect in FeAu/FeNi bilayers.
文摘The ligand exchange reaction is a typical reaction of ferrocenes. This reaction proceeds via the abstraction of a cyclopentadienyl ring by a Lewis acid followed by coordination of an aromatic compound to the resulting species. This reaction with conventional heating requires a long reaction time. Furthermore, the reactions with heterocycles are lower than those with the corresponding hydrocarbons, and do not produce any products in some cases. In this paper, the ligand exchange reaction of ferrocene and a heterocyclic aromatic compound during microwave irradiation and its effect are discussed. As a result, for some heterocycles, the decrease in the reaction time was confirmed. Furthermore, under the microwave irradiation conditions, the tendency in which the difference in their reactivities became low was confirmed.
文摘The article theoretically studied the charge-exchange effects on space charge limitedelectron and ion current densities of non-relativistic one-dimensional slab ion diode, and comparedwith those of without charge exchange.
基金supported by the Fundamental Research Funds for the Central Universities(2019CDSKXYGG0042,2018CDXYGG0054,2020CDJSK01HQ01)National Social Science Funds(16CJL007).
文摘With the rapid expansion of the RMB exchange rate’s floating range,the effects of the RMB exchange rate and global commodity price changes on China’s stock prices are likely to increase.This study uses both auto regressive distributed lag(ARDL)and nonlinear ARDL(NARDL)approaches to explore the symmetric and asymmetric effects of the RMB exchange rate and global commodity prices on China’s stock prices.Our findings show that without considering the critical variable of global commodity prices,there is no cointegration relationship between the RMB exchange rate and China’s stock prices,and the coefficient of the RMB exchange rate is not statistically significant.However,when we introduce global commodity prices into the NARDL model,the result shows that the RMB exchange rate has a negative effect on China’s stock prices,that there indeed exists a long-run cointegration relationship among the RMB exchange rate,global commodity prices,and stock prices in the NARDL model,and that global commodity price changes have an asymmetric effect on China’s stock prices in the long run.Specifically,China’s stock prices are more sensitive to increases than decreases in global commodity prices.Thus,increases in global commodity prices cause China’s stock prices to decline sharply.In contrast,the same magnitude of decline in global commodity prices induces a smaller increase in China’s stock prices.
文摘By generalizing the isotope effect for elemental superconductors (SCs) to the case of pairing in the 2-phonon exchange mechanism for composite SCs, we give here an explanation of the well-known increase in the critical temperature (Tc) of Bi2Sr2CaCu2O8 from 95 K to 110 K and of Bi2Sr2Ca2Cu3O10 from 105 to 115 - 125 K when Bi and Sr in these are replaced by Tl and Ba, respectively. On this basis, we also give the estimated Tcs of some hypothetical SCs, assuming that they may be fabricated by substitutions similar to Bi → Tl and Sr → Ba.
文摘This work aims to establish comparisons between two models used for the performance of heat exchangers. The chosen system, in this case, consists of a heat exchanger used in automotive radiators flat finned tube type. Water and ethylene glycol compound as base fluid and volume fractions of iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>) are used as a refrigerant. The quantities determined in this work are the nanofluid exit temperature, the air exit temperature, the absolute error between the models for heat transfer rate, and Effectiveness. The quantities that constitute parameters, independent variables, are the airflow, represented by the Reynolds number, and the iron oxide volume fraction. Ethylene Glycol 50% compound has slightly better thermal performance than pure water and reduces the reactive effect of water on the environment, increasing the average life of the equipment. The absolute relative error between the models is less than 20% and presents maximum values with the increase of the nanoparticle volume fraction and growth in the Reynolds number for the air.
文摘An important limitation of the research literatures which study the effect on the export of the real effective exchange rates is the lack of application of interaction or moderator effect among the independent variables. To remedy this lacuna, the authors developed a model in which real effective exchange rate moderated the effect of import and utilization of foreign capital on export. The sample comprised 11 years' data in Guangdong China. The result showed that real effective exchange rate of RMB affected the export by interacting with utilization of foreign capital. Moreover, to some degree, the real effective exchange rate can also act as moderator between import and export.
文摘Taking α-Fe and Nd_2Fe_(14)B grains as example, the grain size dependence of the exchange-coupling interaction and effective anisotropy and also their variations depending on the ratio of magnetically soft and hard grain sizes, D_s∶D_h, were investigated. When grain size D>L_(ex), the grain’s anisotropy is the statistic value of the coupled and uncoupled part. The anisotropy constant of uncoupled part is the common value K_1 and that of coupled part varies with the distance to the grain surface. The effective anisotropy constant between magnetically soft and hard grains, K_(eff), can be expressed as the sum of the products of volume fractions for soft and hard grains, respectively, and the corresponding mean anisotropy constants. The calculation results indicate that the exchange-coupling interaction is enhanced with the reduction of grain size, and the effective anisotropy decreases with reducing grain size and increasing ratio of D_s∶D_h. In order to get high effective anisotropy constant, K_(eff), in composite magnetically soft-hard grains, the hard grain size should be larger than 30 nm and the soft grain size should be about 10 nm.