Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium...Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.展开更多
In our original paper, we outlined a new model of nucleosynthesis which began when a small percentage of the vacuum energy was converted primarily into neutron-antineutron pairs but with a very small excess of neutron...In our original paper, we outlined a new model of nucleosynthesis which began when a small percentage of the vacuum energy was converted primarily into neutron-antineutron pairs but with a very small excess of neutrons. In this paper, we present a detailed study of that original idea. We show that immediately after their inception, annihilation and charge exchange reactions proceeded at a very high rate and after an interval of no more than 10<sup>-12</sup> s, the matter/antimatter asymmetry of the universe and the present-day abundance of baryons had been established. The annihilations produced the high density of leptons critical for the weak interactions and the photons that make up the CMB. The model predicts a photon temperature in agreement with the present-day CMB value and also explains the origin of the CMB anisotropy spectrum. We also show how the nucleosynthesis density variations needed to explain all cosmic structures can resolve the difficulties that arise when trying to explain observed primordial element abundances in terms of a single-density universal model of nucleosynthesis.展开更多
We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neu...We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an out- ward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets trans- formed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly ad- vection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) is, the higher the density and temperature are in the disks. We deal with accre- tion disks with relatively low accretion rates: 0.001 Mo s-1 ~ 3)/~ 0.01 Mo S--1 and hence these disks are predominantly advection dominated. We use He-rich and Si- rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31p, 39K, 43Sc' 35C1 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthe- sized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.展开更多
In this paper, the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using...In this paper, the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using the technique of matrix decomposition, a group of analytical solutions for the network equation are obtained. With the analytical solutions, a calculation for heavy element abundance of the solar system is carried out and the results are in good agreement with the astrophysical measurements.展开更多
We study the finite temperature and density effects on beta decay rates to compute their contributions to nucleosynthesis. QED type corrections to beta decay from the hot and dense background are estimated in terms of...We study the finite temperature and density effects on beta decay rates to compute their contributions to nucleosynthesis. QED type corrections to beta decay from the hot and dense background are estimated in terms of the statistical corrections to the self-mass of an electron. For this purpose, we re-examine the hot and dense background contributions to the electron mass and compute its effect to the beta decay rate, helium yield, energy density of the universe as well as the change in neutrino temperature from the first order contribution to the self-mass of electrons during these processes. We explicitly show that the thermal contribution to the helium abundance at T = m of a cooling universe (0.045 percent) is higher than the corresponding contribution to helium abundance of a heating universe (0.031 percent) due to the existence of hot fermions before the beginning of nucleosynthesis and their absence after the nucleosynthesis, in the early universe. Thermal contribution to helium abundance was a simple quadratic function of temperature, before and after the nucleosynthesis. However, this quadratic behavior was not the same before the decoupling temperature due to weak interactions;so the nucleosynthesis did not even start before the universe had cooled down to the neutrino decoupling temperatures and QED became a dominant theory in the presence of a high concentration of charged fermions. It is also explicitly shown that the chemical potential in the core of supermassive and superdense stars affect beta decay and their helium abundance but the background contributions depend on the ratio between temperature and chemical potential and not the chemical potential or temperature only. We calculate the hot and dense background contributions for m = T = μ. It has been noticed that temperature plays a role in regulating parameter in an extremely dense systems. Therefore, for extremely dense systems, temperature has to be large enough to get the expected value of helium production in the stellar cores.展开更多
The Carmeli Cosmological Special Relativity theory (CSR) is used to study the universe at early times after the big bang. The universe temperature vs. time relation is developed from the mass density relation. It is s...The Carmeli Cosmological Special Relativity theory (CSR) is used to study the universe at early times after the big bang. The universe temperature vs. time relation is developed from the mass density relation. It is shown that CSR is well suited to analyze the nucleosynthesis of the light elements up to beryllium, equivalent to the standard model.展开更多
Nucleosynthesis in advection-dominated accretion flow (ADAF) onto a black hole is proposed to be an important role in chemical evolution around compact stars. We investigate the nucleosynthesis in ADAF relevant for ...Nucleosynthesis in advection-dominated accretion flow (ADAF) onto a black hole is proposed to be an important role in chemical evolution around compact stars. We investigate the nucleosynthesis in ADAF relevant for a black hole of low mass, different from that of the self-similar solution. In particular, the presence of supersolar metal mass fractions of some isotopes seems to be associated with the known black hole nucleosynthesis in ADAF, which offers further evidence of diversity of the chemical enrichment.展开更多
In a recent series of papers, we introduced a new model of nucleosynthesis in which the matter content of the universe came into existence at a time of about 4 × 10<sup>-5</sup> s. At that time, a sma...In a recent series of papers, we introduced a new model of nucleosynthesis in which the matter content of the universe came into existence at a time of about 4 × 10<sup>-5</sup> s. At that time, a small percentage of the vacuum energy was converted into neutron/antineutron pairs with a very small excess of neutrons. This process was regulated by an imprint that was established in the vacuum during an initial Plank-era inflation. Immediately after their inception, annihilation and charge exchange reactions proceeded at a very high rate and ran to completion after an interval of about 10<sup>-11</sup> s. By then, all the antibaryons had disappeared thereby establishing the matter/antimatter asymmetry of the universe. What remained were very high densities of mesons and leptons, somewhat lower densities of protons and neutrons, and finally, the very high density of photons that eventually became the CMB. The density of matter so created varied from one location to another in such a manner as to account for all cosmic structures and because the energy density of the photons varied in proportion to that of the matter, the CMB-to-be came into existence with an anisotropic spectrum already in place. For structures, the size of galaxy clusters, the initial anisotropy magnitudes were on the order of 25%. In this paper, we will follow the subsequent evolution of the photons and show that this model predicts with accuracy the temperature of the warmest anisotropies in the observed CMB spectrum. .展开更多
We investigate the impact of inelastic collisions between dark matter(DM)and heavy cosmic ray(CR)nuclei on CR propagation.We approximate the fragmentation cross-sections for DM-CR collisions using collider-measured pr...We investigate the impact of inelastic collisions between dark matter(DM)and heavy cosmic ray(CR)nuclei on CR propagation.We approximate the fragmentation cross-sections for DM-CR collisions using collider-measured proton-nuclei scattering cross-sections,allowing us to assess how these collisions affect the spectra of CR boron and carbon.We derive new CR spectra from DM-CR collisions by incorporating their cross-sections into the source terms and solving the diffusion equation for the complete network of reactions involved in generating secondary species.In a specific example with a coupling strength of b_(χ)=0.1 and a DM mass of m_(χ)=0.1 GeV,considering a simplified scenario where DM interacts exclusively with oxygen,a notable modification in the boron-to-carbon spectrum due to the DM-CR interaction is observed.Particularly,the peak within the spectrum,spanning from 0.1 to 10 GeV,experiences an enhancement of approximately 1.5 times.However,in a more realistic scenario where DM particles interact with all CRs,this peak can be amplified to twice its original value.Utilizing the latest data from AMS-02 and DAMPE on the boron-to-carbon ratio,we estimate a 95%upper limit for the effective inelastic cross-section of DM-proton as a function of DM mass.Our findings reveal that at m_(χ)?2 MeV,the effective inelastic cross-section between DM and protons must be less than O(10^(-32))cm^(2).展开更多
The ^(12)C+^(12)C reaction rate plays an essential role in stellar evolution and nucleosynthesis.Nevertheless,the uncertainties of this reaction rate are still large.We calculate a series of stellar evolution models w...The ^(12)C+^(12)C reaction rate plays an essential role in stellar evolution and nucleosynthesis.Nevertheless,the uncertainties of this reaction rate are still large.We calculate a series of stellar evolution models with the near solar abundance from the zero-age main-sequence through presupernova stages for initial masses of 20 M_(⊙) to 40 M_(⊙).The ^(12)C+^(12)C reaction rates from two different studies are used in our investigation.One is the rate obtained using the Trojan Horse Method(THM)by Tumino et al.[Nature 557(7707),687(2018)],and the other was obtained by Mukhamedzhanov et al.[Physical Review C 99(6),064618(2019)](Muk19).Then,comparisons of the nucleosynthesis and presupernova isotopic abundances are conducted.In particular,we find that in the C burning shell,models with the THM produce a smaller amount of ^(23)Na and some neutron-rich isotopes than Muk19.The difference in the abundance ratios of Na/Mg,S/Mg,Ar/Mg,and K/Mg between the two models are apparent.We compare Na/Mg obtained from our theoretical presupernovae models with Na/Mg in stellar atmospheres observed with high-resolution spectra as well as from the latest galactic chemical evolution model.Although Na/Mg obtained using the THM is within 2σ of the observed stellar ratio,the theoretical uncertainty on Na/Mg introduced by the uncertainty of the ^(12)C+^(12)C reaction rate is almost equivalent to the standard deviation of astronomical observations.Therefore,a more accurate ^(12)C+^(12)C reaction rate is crucial.展开更多
Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the react...Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the reaction cross sections of many isotopes.Given that the number of experiments on the reactions in astrophysical energy regions is very rare,the reaction cross sections are determined by theoretical methods whose accuracy should be tested.In this study,given that ^(121)Sb is a stable seed isotope located in the region of medium-mass p-nuclei,we investigated the cross sections and reaction rates of the ^(121)Sb(α,γ)^(125)I reaction using the TALYS computer code with 432 different combinations of input parameters(OMP,LDM,and SFM).The optimal model combinations were determined using the threshold logic unit method.The theoretical reaction cross-sectional results were compared with the experimental results reported in the literature.The reaction rates were determined using the two input parameter sets most compatible with the measurements,and they were compared with the reaction rate databases:STARLIB and REACLIB.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602401)by the National Natural Science Foundation of China(No.11825504)。
文摘Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.
文摘In our original paper, we outlined a new model of nucleosynthesis which began when a small percentage of the vacuum energy was converted primarily into neutron-antineutron pairs but with a very small excess of neutrons. In this paper, we present a detailed study of that original idea. We show that immediately after their inception, annihilation and charge exchange reactions proceeded at a very high rate and after an interval of no more than 10<sup>-12</sup> s, the matter/antimatter asymmetry of the universe and the present-day abundance of baryons had been established. The annihilations produced the high density of leptons critical for the weak interactions and the photons that make up the CMB. The model predicts a photon temperature in agreement with the present-day CMB value and also explains the origin of the CMB anisotropy spectrum. We also show how the nucleosynthesis density variations needed to explain all cosmic structures can resolve the difficulties that arise when trying to explain observed primordial element abundances in terms of a single-density universal model of nucleosynthesis.
基金partly supported by the ISRO grant ISRO/RES/2/367/10-11
文摘We investigate nucleosynthesis inside the gamma-ray burst (GRB) accre- tion disks formed by the Type II collapsars. In these collapsars, the core collapse of massive stars first leads to the formation of a proto-neutron star. After that, an out- ward moving shock triggers a successful supernova. However, the supernova ejecta lacks momentum and within a few seconds the newly formed neutron star gets trans- formed to a stellar mass black hole via massive fallback. The hydrodynamics of such an accretion disk formed from the fallback material of the supernova ejecta has been studied extensively in the past. We use these well-established hydrodynamic models for our accretion disk in order to understand nucleosynthesis, which is mainly ad- vection dominated in the outer regions. Neutrino cooling becomes important in the inner disk where the temperature and density are higher. The higher the accretion rate (M) is, the higher the density and temperature are in the disks. We deal with accre- tion disks with relatively low accretion rates: 0.001 Mo s-1 ~ 3)/~ 0.01 Mo S--1 and hence these disks are predominantly advection dominated. We use He-rich and Si- rich abundances as the initial condition of nucleosynthesis at the outer disk, and being equipped with the disk hydrodynamics and the nuclear network code, we study the abundance evolution as matter inflows and falls into the central object. We investigate the variation in the nucleosynthesis products in the disk with the change in the initial abundance at the outer disk and also with the change in the mass accretion rate. We report the synthesis of several unusual nuclei like 31p, 39K, 43Sc' 35C1 and various isotopes of titanium, vanadium, chromium, manganese and copper. We also confirm that isotopes of iron, cobalt, nickel, argon, calcium, sulphur and silicon get synthe- sized in the disk, as shown by previous authors. Much of these heavy elements thus synthesized are ejected from the disk via outflows and hence they should leave their signature in observed data.
基金supported by the National Natural Science Foundation of China (Grant No 10447141)the Youth Foundation of Beijing University of Chemical Technology,China (Grant No QN0622)
文摘In this paper, the network equation for the slow neutron capture process (s-process) of heavy element nucleosynthesis is investigated. Dividing the s-process network reaction chains into two standard forms and using the technique of matrix decomposition, a group of analytical solutions for the network equation are obtained. With the analytical solutions, a calculation for heavy element abundance of the solar system is carried out and the results are in good agreement with the astrophysical measurements.
文摘We study the finite temperature and density effects on beta decay rates to compute their contributions to nucleosynthesis. QED type corrections to beta decay from the hot and dense background are estimated in terms of the statistical corrections to the self-mass of an electron. For this purpose, we re-examine the hot and dense background contributions to the electron mass and compute its effect to the beta decay rate, helium yield, energy density of the universe as well as the change in neutrino temperature from the first order contribution to the self-mass of electrons during these processes. We explicitly show that the thermal contribution to the helium abundance at T = m of a cooling universe (0.045 percent) is higher than the corresponding contribution to helium abundance of a heating universe (0.031 percent) due to the existence of hot fermions before the beginning of nucleosynthesis and their absence after the nucleosynthesis, in the early universe. Thermal contribution to helium abundance was a simple quadratic function of temperature, before and after the nucleosynthesis. However, this quadratic behavior was not the same before the decoupling temperature due to weak interactions;so the nucleosynthesis did not even start before the universe had cooled down to the neutrino decoupling temperatures and QED became a dominant theory in the presence of a high concentration of charged fermions. It is also explicitly shown that the chemical potential in the core of supermassive and superdense stars affect beta decay and their helium abundance but the background contributions depend on the ratio between temperature and chemical potential and not the chemical potential or temperature only. We calculate the hot and dense background contributions for m = T = μ. It has been noticed that temperature plays a role in regulating parameter in an extremely dense systems. Therefore, for extremely dense systems, temperature has to be large enough to get the expected value of helium production in the stellar cores.
文摘The Carmeli Cosmological Special Relativity theory (CSR) is used to study the universe at early times after the big bang. The universe temperature vs. time relation is developed from the mass density relation. It is shown that CSR is well suited to analyze the nucleosynthesis of the light elements up to beryllium, equivalent to the standard model.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11547041,11403007,11673007,11643007,11333004,U1531130,11673059,11390374 and 11521303the Chinese Academy of Sciences under Grant Nos KJZD-EW-M06-01and QYZDB-SSW-SYS001
文摘Nucleosynthesis in advection-dominated accretion flow (ADAF) onto a black hole is proposed to be an important role in chemical evolution around compact stars. We investigate the nucleosynthesis in ADAF relevant for a black hole of low mass, different from that of the self-similar solution. In particular, the presence of supersolar metal mass fractions of some isotopes seems to be associated with the known black hole nucleosynthesis in ADAF, which offers further evidence of diversity of the chemical enrichment.
文摘In a recent series of papers, we introduced a new model of nucleosynthesis in which the matter content of the universe came into existence at a time of about 4 × 10<sup>-5</sup> s. At that time, a small percentage of the vacuum energy was converted into neutron/antineutron pairs with a very small excess of neutrons. This process was regulated by an imprint that was established in the vacuum during an initial Plank-era inflation. Immediately after their inception, annihilation and charge exchange reactions proceeded at a very high rate and ran to completion after an interval of about 10<sup>-11</sup> s. By then, all the antibaryons had disappeared thereby establishing the matter/antimatter asymmetry of the universe. What remained were very high densities of mesons and leptons, somewhat lower densities of protons and neutrons, and finally, the very high density of photons that eventually became the CMB. The density of matter so created varied from one location to another in such a manner as to account for all cosmic structures and because the energy density of the photons varied in proportion to that of the matter, the CMB-to-be came into existence with an anisotropic spectrum already in place. For structures, the size of galaxy clusters, the initial anisotropy magnitudes were on the order of 25%. In this paper, we will follow the subsequent evolution of the photons and show that this model predicts with accuracy the temperature of the warmest anisotropies in the observed CMB spectrum. .
基金supported by the National Key Research and Development Program of China(2022YFF0503304,2020YFC2201600,2018YFA0404504 and 2018YFA0404601)the Ministry of Science and Technology of China(2020SKA0110402,2020SKA0110401 and 2020SKA0110100)+4 种基金the National Natural Science Foundation of China(11890691,12205388 and 12220101003)the CAS Project for Young Scientists in Basic Research(YSBR-061,YSBR-092)the China Manned Space Project with No.CMS-CSST-2021(A02,A03 and B01)the Major Key Project of PCLthe 111 project(B20019)。
文摘We investigate the impact of inelastic collisions between dark matter(DM)and heavy cosmic ray(CR)nuclei on CR propagation.We approximate the fragmentation cross-sections for DM-CR collisions using collider-measured proton-nuclei scattering cross-sections,allowing us to assess how these collisions affect the spectra of CR boron and carbon.We derive new CR spectra from DM-CR collisions by incorporating their cross-sections into the source terms and solving the diffusion equation for the complete network of reactions involved in generating secondary species.In a specific example with a coupling strength of b_(χ)=0.1 and a DM mass of m_(χ)=0.1 GeV,considering a simplified scenario where DM interacts exclusively with oxygen,a notable modification in the boron-to-carbon spectrum due to the DM-CR interaction is observed.Particularly,the peak within the spectrum,spanning from 0.1 to 10 GeV,experiences an enhancement of approximately 1.5 times.However,in a more realistic scenario where DM particles interact with all CRs,this peak can be amplified to twice its original value.Utilizing the latest data from AMS-02 and DAMPE on the boron-to-carbon ratio,we estimate a 95%upper limit for the effective inelastic cross-section of DM-proton as a function of DM mass.Our findings reveal that at m_(χ)?2 MeV,the effective inelastic cross-section between DM and protons must be less than O(10^(-32))cm^(2).
基金Supported by the National Natural Science Foundation of China(11988101,11890694)the National Key R&D Program of China(2019YFA0405502)K.Nomoto is supported by the World Premier International Research Center Initiative(WPI),MEXT,Japan,and the Japan Society for the Promotion of Science(JSPS)KAKENHIgrant(JP17K05382,JP20K04024,JP21H04499)。
文摘The ^(12)C+^(12)C reaction rate plays an essential role in stellar evolution and nucleosynthesis.Nevertheless,the uncertainties of this reaction rate are still large.We calculate a series of stellar evolution models with the near solar abundance from the zero-age main-sequence through presupernova stages for initial masses of 20 M_(⊙) to 40 M_(⊙).The ^(12)C+^(12)C reaction rates from two different studies are used in our investigation.One is the rate obtained using the Trojan Horse Method(THM)by Tumino et al.[Nature 557(7707),687(2018)],and the other was obtained by Mukhamedzhanov et al.[Physical Review C 99(6),064618(2019)](Muk19).Then,comparisons of the nucleosynthesis and presupernova isotopic abundances are conducted.In particular,we find that in the C burning shell,models with the THM produce a smaller amount of ^(23)Na and some neutron-rich isotopes than Muk19.The difference in the abundance ratios of Na/Mg,S/Mg,Ar/Mg,and K/Mg between the two models are apparent.We compare Na/Mg obtained from our theoretical presupernovae models with Na/Mg in stellar atmospheres observed with high-resolution spectra as well as from the latest galactic chemical evolution model.Although Na/Mg obtained using the THM is within 2σ of the observed stellar ratio,the theoretical uncertainty on Na/Mg introduced by the uncertainty of the ^(12)C+^(12)C reaction rate is almost equivalent to the standard deviation of astronomical observations.Therefore,a more accurate ^(12)C+^(12)C reaction rate is crucial.
文摘Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the reaction cross sections of many isotopes.Given that the number of experiments on the reactions in astrophysical energy regions is very rare,the reaction cross sections are determined by theoretical methods whose accuracy should be tested.In this study,given that ^(121)Sb is a stable seed isotope located in the region of medium-mass p-nuclei,we investigated the cross sections and reaction rates of the ^(121)Sb(α,γ)^(125)I reaction using the TALYS computer code with 432 different combinations of input parameters(OMP,LDM,and SFM).The optimal model combinations were determined using the threshold logic unit method.The theoretical reaction cross-sectional results were compared with the experimental results reported in the literature.The reaction rates were determined using the two input parameter sets most compatible with the measurements,and they were compared with the reaction rate databases:STARLIB and REACLIB.