扫描离子电导显微镜(scanning ion conductance microscopy,SICM)是一种非接触式的扫描探针显微技术(scanning probe microscopy,SPM),可以实现生物样品在近生理条件下的成像。随着技术发展,目前广泛应用于生物医学领域的SICM主要包括两...扫描离子电导显微镜(scanning ion conductance microscopy,SICM)是一种非接触式的扫描探针显微技术(scanning probe microscopy,SPM),可以实现生物样品在近生理条件下的成像。随着技术发展,目前广泛应用于生物医学领域的SICM主要包括两种:跳跃式离子电导显微技术(hopping probe ion conductance microscopy,HPICM)和外加压力模式的SICM。前者可以应用于软的、黏的、对外力或其它机械信号敏感的样品的高分辨成像;后者可以通过探针微管对样品局部施加外力刺激或化学、电学、光学或生物分子等信号,实现对样品动力学性质或相关生理过程局部的原位研究。此外,SICM技术具有良好的开放性,能够越来越多地与其它技术手段联用,极大地丰富了其在生物医学领域的应用,可用于疾病发病机理、药物作用以及临床诊断等的研究。但是,目前SICM时间分辨率较低,这制约了它在生物体系动力学行为方面的研究。展开更多
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul...Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.展开更多
文摘扫描离子电导显微镜(scanning ion conductance microscopy,SICM)是一种非接触式的扫描探针显微技术(scanning probe microscopy,SPM),可以实现生物样品在近生理条件下的成像。随着技术发展,目前广泛应用于生物医学领域的SICM主要包括两种:跳跃式离子电导显微技术(hopping probe ion conductance microscopy,HPICM)和外加压力模式的SICM。前者可以应用于软的、黏的、对外力或其它机械信号敏感的样品的高分辨成像;后者可以通过探针微管对样品局部施加外力刺激或化学、电学、光学或生物分子等信号,实现对样品动力学性质或相关生理过程局部的原位研究。此外,SICM技术具有良好的开放性,能够越来越多地与其它技术手段联用,极大地丰富了其在生物医学领域的应用,可用于疾病发病机理、药物作用以及临床诊断等的研究。但是,目前SICM时间分辨率较低,这制约了它在生物体系动力学行为方面的研究。
基金Supported by National Natural Science Foundation of China(Grant No.51375363)
文摘Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.