This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)syste...This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.展开更多
In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown externa...In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.展开更多
This study proposes a new nonlinear tracking control method with safe angular velocity constraints for a cushion robot. A fuzzy path planning algorithm is investigated and a realtime desired motion path of obstacle av...This study proposes a new nonlinear tracking control method with safe angular velocity constraints for a cushion robot. A fuzzy path planning algorithm is investigated and a realtime desired motion path of obstacle avoidance is obtained. The angular velocity is constrained by the controller, so the planned path guarantees the safety of users. According to Lyapunov theory, the controller is designed to maintain stability in terms of solutions of linear matrix inequalities and the controller's performance with safe angular velocity constraints is derived.The simulation and experiment results confirm the effectiveness of the proposed method and verify that the angular velocity of the cushion robot provided safe motion with obstacle avoidance.展开更多
This paper considers the dynamical behavior of a Duffing-Mathieu type system with a cubic single-well potential during the principal parametric resonance. Both the cases of constant and time-dependent excitation ampli...This paper considers the dynamical behavior of a Duffing-Mathieu type system with a cubic single-well potential during the principal parametric resonance. Both the cases of constant and time-dependent excitation amplitude are used to observe the variation of the extent and the rate of the erosion in safe basins. It is evident that the appearance of fractal basin boundaries heralds the onset of the losing of structural integrity. The minimum value of control parameter to prevent the basin from erosion is given along with the excitation amplitude varying. The results show the time-dependence of excitation amplitude can be used to control the extent and the rate of the erosion and delay the first occurrence of heteroclinic tangency.展开更多
传统的数据上报,大多采用发送方作为客户端,向上级服务器发起连接请求,采用主动推送的方式完成数据传输。当电站数量巨大且上报数据种类和通信条件都不尽相同时,这种方式无疑为上级服务器打开了一个后门,带来了一定的安全隐患。提出了...传统的数据上报,大多采用发送方作为客户端,向上级服务器发起连接请求,采用主动推送的方式完成数据传输。当电站数量巨大且上报数据种类和通信条件都不尽相同时,这种方式无疑为上级服务器打开了一个后门,带来了一定的安全隐患。提出了一种接收方发起的电站数据传输控制方法,由上级数据中心发起请求、电站响应并完成数据传送的反向拉动模式,使得中心侧不再暴露通讯端口,降低了中心侧网络遭受攻击的可能性。有此,设计了配套的应用层数据可靠传输协议ADRTP(Application-layer Data Reliable Transport Protocol),通过一系列控制机制和调整最大数据包长度L_(max),提高数据传输的效率。展开更多
基金supported in part by the Department of Navy award (N00014-22-1-2159)the National Science Foundation under award (ECCS-2227311)。
文摘This paper presents a risk-informed data-driven safe control design approach for a class of stochastic uncertain nonlinear discrete-time systems.The nonlinear system is modeled using linear parameter-varying(LPV)systems.A model-based probabilistic safe controller is first designed to guarantee probabilisticλ-contractivity(i.e.,stability and invariance)of the LPV system with respect to a given polyhedral safe set.To obviate the requirement of knowing the LPV system model and to bypass identifying its open-loop model,its closed-loop data-based representation is provided in terms of state and scheduling data as well as a decision variable.It is shown that the variance of the closedloop system,as well as the probability of safety satisfaction,depends on the decision variable and the noise covariance.A minimum-variance direct data-driven gain-scheduling safe control design approach is presented next by designing the decision variable such that all possible closed-loop system realizations satisfy safety with the highest confidence level.This minimum-variance approach is a control-oriented learning method since it minimizes the variance of the state of the closed-loop system with respect to the safe set,and thus minimizes the risk of safety violation.Unlike the certainty-equivalent approach that results in a risk-neutral control design,the minimum-variance method leads to a risk-averse control design.It is shown that the presented direct risk-averse learning approach requires weaker data richness conditions than existing indirect learning methods based on system identification and can lead to a lower risk of safety violation.Two simulation examples along with an experimental validation on an autonomous vehicle are provided to show the effectiveness of the presented approach.
基金supported in part by the National Natural ScienceFoundation of China (U2013201)the National Science Fund for Distinguished Young Scholars (61825302)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX20_0208)。
文摘In this paper, a disturbance observer-based safe tracking control scheme is proposed for a medium-scale unmanned helicopter with rotor flapping dynamics in the presence of partial state constraints and unknown external disturbances. A safety protection algorithm is proposed to keep the constrained states within the given safe-set. A second-order disturbance observer technique is utilized to estimate the external disturbances. It is shown that the desired tracking performance of the controlled unmanned helicopter can be achieved with the application of the backstepping approach, dynamic surface control technique, and Lyapunov method. Finally, the availability of the proposed control scheme has been shown by simulation results.
基金supported by the Program for Liaoning Excellent Talents in University of China(LJQ2014013)the Liaoning Natural Science Foundation of China(2015020066)
文摘This study proposes a new nonlinear tracking control method with safe angular velocity constraints for a cushion robot. A fuzzy path planning algorithm is investigated and a realtime desired motion path of obstacle avoidance is obtained. The angular velocity is constrained by the controller, so the planned path guarantees the safety of users. According to Lyapunov theory, the controller is designed to maintain stability in terms of solutions of linear matrix inequalities and the controller's performance with safe angular velocity constraints is derived.The simulation and experiment results confirm the effectiveness of the proposed method and verify that the angular velocity of the cushion robot provided safe motion with obstacle avoidance.
基金the National Science Foundation of ChinaPSF of China
文摘This paper considers the dynamical behavior of a Duffing-Mathieu type system with a cubic single-well potential during the principal parametric resonance. Both the cases of constant and time-dependent excitation amplitude are used to observe the variation of the extent and the rate of the erosion in safe basins. It is evident that the appearance of fractal basin boundaries heralds the onset of the losing of structural integrity. The minimum value of control parameter to prevent the basin from erosion is given along with the excitation amplitude varying. The results show the time-dependence of excitation amplitude can be used to control the extent and the rate of the erosion and delay the first occurrence of heteroclinic tangency.
文摘传统的数据上报,大多采用发送方作为客户端,向上级服务器发起连接请求,采用主动推送的方式完成数据传输。当电站数量巨大且上报数据种类和通信条件都不尽相同时,这种方式无疑为上级服务器打开了一个后门,带来了一定的安全隐患。提出了一种接收方发起的电站数据传输控制方法,由上级数据中心发起请求、电站响应并完成数据传送的反向拉动模式,使得中心侧不再暴露通讯端口,降低了中心侧网络遭受攻击的可能性。有此,设计了配套的应用层数据可靠传输协议ADRTP(Application-layer Data Reliable Transport Protocol),通过一系列控制机制和调整最大数据包长度L_(max),提高数据传输的效率。