Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance o...Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.展开更多
This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (...This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.展开更多
A new landing region selection algorithm for an unmanned helicopter is proposed based on an attention model.Different from the original attention model,some properties of the possible safe landing regions(e.g.,depth,...A new landing region selection algorithm for an unmanned helicopter is proposed based on an attention model.Different from the original attention model,some properties of the possible safe landing regions(e.g.,depth,regional color and motion features)are included in the selection algorithm.Furthermore,regional color and motion features are fused directly into the saliency map because these features do not have the "central-peripheral"property.Experimental results validate the feasibility and efficiency of this approach.展开更多
UML 2.0 activity diagrams (ADs) are largely used as a modeling language for flow-oriented behaviors in software and business processes. Unfortunately, their place/transition operational semantics is unable to capture ...UML 2.0 activity diagrams (ADs) are largely used as a modeling language for flow-oriented behaviors in software and business processes. Unfortunately, their place/transition operational semantics is unable to capture and preserve semantics of the newly defined high-level activities constructs such as Interruptible Activity Region. Particularly, basic Petri nets do not preserve the non-locality semantics and reactivity concept of ADs. This is mainly due to the absence of global synchronization mechanisms in basic Petri nets. Zero-safe nets are a high-level variant of Petri nets that ensure transitions global coordination thanks to a new kind of places, called zero places. Indeed, zero-safe nets naturally address Interruptible Activity Region that needs a special semantics, forcing the control flow by external events and defining a certain priority level of executions. Therefore, zero-safe nets are adopted in this work as semantic framework for UML 2.0 activity diagrams.展开更多
The flow assurance problem of pipelines in offshore production is becoming more and more serious because oil fields in more and more unusual environments have been brought in production.HCFC-141b and THF were selected...The flow assurance problem of pipelines in offshore production is becoming more and more serious because oil fields in more and more unusual environments have been brought in production.HCFC-141b and THF were selected as the substitutes to study the flow behavior and mechanism of hydrate blockage in pipelines on the newly built flow loop,which was a two pass loop consisting of a 42 mm diameter stainless pipe,30 m long.Slurry-like hydrates and slush-like hydrates were observed with the formation of hydrates in pipeline.There are critical hydrate volume concentrations of 37.5% for HCFC-141b hydrate slurry and 50.6% for THF hydrate slurry respectively.The pipeline would be free of hydrate blockage when the hydrate volume concentration was lower than the critical volume concentration; while otherwise the pipeline would be easily blocked.A safe region,which is defined according the critical hydrate volume concentrations,is firstly proposed for hydrate slurry,and it can be used to judge if the pipeline can be run safely or not.展开更多
模块化多电平换流器(MMC)在柔性直流输电领域得到了广泛的应用。在高压大功率场合,MMC的子模块数量庞大,子模块故障是一种常见的故障类型。为了提高可靠性,通常MMC每个桥臂上均设置一定数量的冗余子模块。然而,当MMC发生不对称子模块故...模块化多电平换流器(MMC)在柔性直流输电领域得到了广泛的应用。在高压大功率场合,MMC的子模块数量庞大,子模块故障是一种常见的故障类型。为了提高可靠性,通常MMC每个桥臂上均设置一定数量的冗余子模块。然而,当MMC发生不对称子模块故障时,直流电流中会出现基频波动,影响MMC的运行性能。针对上、下桥臂同时存在故障子模块的工况,分析了MMC桥臂间能量平衡的条件。据此,提出了一种能量再平衡控制策略,以抑制直流电流中的基频波动。与传统控制策略相比,在额定冗余运行域内,所提控制策略无需提高子模块电容电压。分析了采用所提控制策略时MMC的最大安全运行域,结果表明所提控制策略能扩展MMC的安全运行域,进一步提高其可靠性。±350 k V/1 000 MW的MMC硬件在环实验结果验证了所提能量再平衡控制策略的有效性以及安全运行域分析的正确性。展开更多
基金Supported by Sichuan Provincial Key Research and Development Program of China(Grant No.2023YFG0351)National Natural Science Foundation of China(Grant No.61833002).
文摘Predictive maintenance has emerged as an effective tool for curbing maintenance costs,yet prevailing research predominantly concentrates on the abnormal phases.Within the ostensibly stable healthy phase,the reliance on anomaly detection to preempt equipment malfunctions faces the challenge of sudden anomaly discernment.To address this challenge,this paper proposes a dual-task learning approach for bearing anomaly detection and state evaluation of safe regions.The proposed method transforms the execution of the two tasks into an optimization issue of the hypersphere center.By leveraging the monotonicity and distinguishability pertinent to the tasks as the foundation for optimization,it reconstructs the SVDD model to ensure equilibrium in the model’s performance across the two tasks.Subsequent experiments verify the proposed method’s effectiveness,which is interpreted from the perspectives of parameter adjustment and enveloping trade-offs.In the meantime,experimental results also show two deficiencies in anomaly detection accuracy and state evaluation metrics.Their theoretical analysis inspires us to focus on feature extraction and data collection to achieve improvements.The proposed method lays the foundation for realizing predictive maintenance in a healthy stage by improving condition awareness in safe regions.
基金supported by the National Natural Science Foundation of China under Grant 61933014 and Grant 62173243.
文摘This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.
文摘现有工程运行数据显示,并网变流器(grid-connected converter,GCC)的动态特性与工作点密切相关。受新能源出力波动、负载投切等外部因素的影响,变流器工作点呈现随机时变特性。因此,分析整个工作区间中所有工作点的系统稳定性具有重要意义。传统阻抗/导纳分析方法可以有效分析GCC运行于特定工作点时的稳定性,但考虑系统所有可能工作点时则需重复分析,工作量大且难度较高。为解决这一难题,提出一种考虑工作点变量的多元建模方法。将工作点变量引入导纳模型,通过控制环路重构,建立GCC的多变量单输入单输出(single input single output,SISO)模型。所提模型直接包含工作点变量,因此可以有效分析变流器全工作区间动态特性。此外,综合考虑变流器最大传输限制和动态特性,提出一种基于安全运行域的稳定性分析方法,以实现多维工作区间中系统稳定性的直观表征。仿真和实验验证了所提多变量SISO模型和基于安全运行域的分析方法的正确性。所提模型和方法在分析电力电子装置运行极限、指导变流器设计和辅助功率器件发挥极限性能等工程场景中具有广泛应用潜力。
基金Supported by Aeronautical Science Foundation of China(20130542025)
文摘A new landing region selection algorithm for an unmanned helicopter is proposed based on an attention model.Different from the original attention model,some properties of the possible safe landing regions(e.g.,depth,regional color and motion features)are included in the selection algorithm.Furthermore,regional color and motion features are fused directly into the saliency map because these features do not have the "central-peripheral"property.Experimental results validate the feasibility and efficiency of this approach.
文摘UML 2.0 activity diagrams (ADs) are largely used as a modeling language for flow-oriented behaviors in software and business processes. Unfortunately, their place/transition operational semantics is unable to capture and preserve semantics of the newly defined high-level activities constructs such as Interruptible Activity Region. Particularly, basic Petri nets do not preserve the non-locality semantics and reactivity concept of ADs. This is mainly due to the absence of global synchronization mechanisms in basic Petri nets. Zero-safe nets are a high-level variant of Petri nets that ensure transitions global coordination thanks to a new kind of places, called zero places. Indeed, zero-safe nets naturally address Interruptible Activity Region that needs a special semantics, forcing the control flow by external events and defining a certain priority level of executions. Therefore, zero-safe nets are adopted in this work as semantic framework for UML 2.0 activity diagrams.
文摘The flow assurance problem of pipelines in offshore production is becoming more and more serious because oil fields in more and more unusual environments have been brought in production.HCFC-141b and THF were selected as the substitutes to study the flow behavior and mechanism of hydrate blockage in pipelines on the newly built flow loop,which was a two pass loop consisting of a 42 mm diameter stainless pipe,30 m long.Slurry-like hydrates and slush-like hydrates were observed with the formation of hydrates in pipeline.There are critical hydrate volume concentrations of 37.5% for HCFC-141b hydrate slurry and 50.6% for THF hydrate slurry respectively.The pipeline would be free of hydrate blockage when the hydrate volume concentration was lower than the critical volume concentration; while otherwise the pipeline would be easily blocked.A safe region,which is defined according the critical hydrate volume concentrations,is firstly proposed for hydrate slurry,and it can be used to judge if the pipeline can be run safely or not.
文摘模块化多电平换流器(MMC)在柔性直流输电领域得到了广泛的应用。在高压大功率场合,MMC的子模块数量庞大,子模块故障是一种常见的故障类型。为了提高可靠性,通常MMC每个桥臂上均设置一定数量的冗余子模块。然而,当MMC发生不对称子模块故障时,直流电流中会出现基频波动,影响MMC的运行性能。针对上、下桥臂同时存在故障子模块的工况,分析了MMC桥臂间能量平衡的条件。据此,提出了一种能量再平衡控制策略,以抑制直流电流中的基频波动。与传统控制策略相比,在额定冗余运行域内,所提控制策略无需提高子模块电容电压。分析了采用所提控制策略时MMC的最大安全运行域,结果表明所提控制策略能扩展MMC的安全运行域,进一步提高其可靠性。±350 k V/1 000 MW的MMC硬件在环实验结果验证了所提能量再平衡控制策略的有效性以及安全运行域分析的正确性。