Owing to the complex environmental conditions, suspension could induce complicated forces on submarine pipelines and even cause vortex-induced vibration, resulting in fatigue damage of pipelines. Through aiming at the...Owing to the complex environmental conditions, suspension could induce complicated forces on submarine pipelines and even cause vortex-induced vibration, resulting in fatigue damage of pipelines. Through aiming at the 28-inch submarine pipeline in the East China Sea, the pipeline was segmented according to the similarity, considering the factors of pipe assembly, typhoon, current, wave and seabed topography. The effects of span length on natural frequency in each section of submarine pipeline were analyzed by finite element model. The maximum safe span length allowed by each pipeline section was verified by fatigue cumulative damage theory, and the fatigue life of each pipeline section were predicted. The results showed that each order natural frequency of the pipeline decreased with the increase of span length. The calculated results of empirical formulas were much smaller than those of the FEM analysis. The increase of the gap between the suspended pipeline and the seabed was beneficial to enhance the fatigue life of the suspended pipeline.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11802168 and 51575331)project funded by China Postdoctoral Science Foundation(No.2019M661458)
文摘Owing to the complex environmental conditions, suspension could induce complicated forces on submarine pipelines and even cause vortex-induced vibration, resulting in fatigue damage of pipelines. Through aiming at the 28-inch submarine pipeline in the East China Sea, the pipeline was segmented according to the similarity, considering the factors of pipe assembly, typhoon, current, wave and seabed topography. The effects of span length on natural frequency in each section of submarine pipeline were analyzed by finite element model. The maximum safe span length allowed by each pipeline section was verified by fatigue cumulative damage theory, and the fatigue life of each pipeline section were predicted. The results showed that each order natural frequency of the pipeline decreased with the increase of span length. The calculated results of empirical formulas were much smaller than those of the FEM analysis. The increase of the gap between the suspended pipeline and the seabed was beneficial to enhance the fatigue life of the suspended pipeline.