Disposal of spent nuclear fuel and long lived radioactive waste in deep clay geological formations is one of the promising options worldwide. In this concept of the geological disposal system, the host clay formation ...Disposal of spent nuclear fuel and long lived radioactive waste in deep clay geological formations is one of the promising options worldwide. In this concept of the geological disposal system, the host clay formation is considered as a principal barrier on which the fulfillment of key safety functions rests. Between 2006 and 2010, the European Commission project TIMODAZ, which gathered 15 partners from 8 countries, has investigated the coupled thermo-hydro-mechanical (THM) effects on clay formations for geological disposal of radioactive waste, and specific attention was paid to investigating the thermal effect on the evolution of the damaged zone (DZ). Three types of potential host clay formations were investigated: the Boom Clay (Belgium), the Opalinus Clay (Switzerland) and the Callovo-Oxfordian argillite (France). Intensive experimental (laboratory and in situ in underground research laboratories) and numerical studies have been performed. Multi-scale approach was used in the course of the project. High degree of similarities between the failure modes, sealing process, stress paths, deformation, etc., observed in laboratories and in situ has been obtained, which increased the confidence in the applicability of laboratory test results and up-scaling perspective. The results of the laboratory and in situ tests obtained allowed the parameters for numerical models at various scales to be derived and provided the basis for the simplified performance assessment models that are used to assess the long-term safety of a repository. The good cooperation between the numerical modeler and experimenters has allowed an in-depth analysis of the experimental results and thus better understanding the underlying processes, and consequently increased the capabilities to model the THM effects in claystones. This paper presents the main achievements obtained by TIMODAZ project and shows how a European scientific community investigates a problem of concern in a collaborative way and how the obtained main results are applied to the performance assessment of a geological repository.展开更多
Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development ...Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development of the aircraft RECATegorization(RECAT) programs in Europe and in USA. Its phase one focused on redefining distance separation matrix with six static aircraft wake turbulence categories instead of three with the current International Civil Aviation Organization(ICAO) regulations. In Europe, the RECAT-EU regulation is now entering under operational implementation atseveral key airports. As proven by several research projects in the past, LIght Detection And Ranging(LIDAR) sensors are considered as the ground truth wake vortex measurements for assessing the safety impact of a new wake turbulence regulation at an airport in quantifying the risks given the local specificities. LIDAR's can also be used to perform risk monitoring after the implementation. In this paper, the principle to measure wake vortices with scanning coherent Doppler LIDARs is described as well as its dedicated post-processing. Finally the use of WINDCUBELIDAR based solution for supporting the implementation of new wake turbulenceregulation is described along with satisfyingresults that have permitted the monitoring of the wake vortex encounter risk after the implementation of a new wake turbulence regulation.展开更多
In Japan,high-level radioactive waste and specific low-level radioactive waste which includes long-lived radionuclides are planned to be disposed of in the geological formations at depths greater than 300 m.The dispos...In Japan,high-level radioactive waste and specific low-level radioactive waste which includes long-lived radionuclides are planned to be disposed of in the geological formations at depths greater than 300 m.The disposal site will be selected through a stepwise site investigation process that consists of a Literature Survey,Preliminary Investigation,and Detailed Investigation phases.In October 2020 a Literature Survey was launched in Japan at two municipalities in Hokkaido for the first time since NUMO initiated a nationwide call for volunteer municipalities in 2002,and the outcomes are currently being compiled.To enhance the public’s understanding of how to implement safe geological disposal in Japan based on the latest scientific knowledge and technology,NUMO,as the implementing organisation,developed and published a safety case for geological disposal at the pre-siting stage.This safety case provides multiple lines of arguments and evidence to demonstrate the feasibility of the geological disposal and a basic structure for a safety case that will be applicable to any potential sites in Japan.The safety case also presented some R&D challenges to enhance the technical confidence of the project,including the R&D topics related to rock mechanics.This report presents the current status of the geological disposal programme in Japan,together with the status of the Literature Survey phase and an overview of the NUMO safety case.展开更多
基金funded by the European Commission through the TIMODAZ project within the 6th framework programme (Contract Number: FI6W-CT-2007-036449)
文摘Disposal of spent nuclear fuel and long lived radioactive waste in deep clay geological formations is one of the promising options worldwide. In this concept of the geological disposal system, the host clay formation is considered as a principal barrier on which the fulfillment of key safety functions rests. Between 2006 and 2010, the European Commission project TIMODAZ, which gathered 15 partners from 8 countries, has investigated the coupled thermo-hydro-mechanical (THM) effects on clay formations for geological disposal of radioactive waste, and specific attention was paid to investigating the thermal effect on the evolution of the damaged zone (DZ). Three types of potential host clay formations were investigated: the Boom Clay (Belgium), the Opalinus Clay (Switzerland) and the Callovo-Oxfordian argillite (France). Intensive experimental (laboratory and in situ in underground research laboratories) and numerical studies have been performed. Multi-scale approach was used in the course of the project. High degree of similarities between the failure modes, sealing process, stress paths, deformation, etc., observed in laboratories and in situ has been obtained, which increased the confidence in the applicability of laboratory test results and up-scaling perspective. The results of the laboratory and in situ tests obtained allowed the parameters for numerical models at various scales to be derived and provided the basis for the simplified performance assessment models that are used to assess the long-term safety of a repository. The good cooperation between the numerical modeler and experimenters has allowed an in-depth analysis of the experimental results and thus better understanding the underlying processes, and consequently increased the capabilities to model the THM effects in claystones. This paper presents the main achievements obtained by TIMODAZ project and shows how a European scientific community investigates a problem of concern in a collaborative way and how the obtained main results are applied to the performance assessment of a geological repository.
文摘Numerous studies have been performed to better understand the behavior of wake vortices with regards to aircraft characteristics and weather conditionsover the pastten years. These studies have led to the development of the aircraft RECATegorization(RECAT) programs in Europe and in USA. Its phase one focused on redefining distance separation matrix with six static aircraft wake turbulence categories instead of three with the current International Civil Aviation Organization(ICAO) regulations. In Europe, the RECAT-EU regulation is now entering under operational implementation atseveral key airports. As proven by several research projects in the past, LIght Detection And Ranging(LIDAR) sensors are considered as the ground truth wake vortex measurements for assessing the safety impact of a new wake turbulence regulation at an airport in quantifying the risks given the local specificities. LIDAR's can also be used to perform risk monitoring after the implementation. In this paper, the principle to measure wake vortices with scanning coherent Doppler LIDARs is described as well as its dedicated post-processing. Finally the use of WINDCUBELIDAR based solution for supporting the implementation of new wake turbulenceregulation is described along with satisfyingresults that have permitted the monitoring of the wake vortex encounter risk after the implementation of a new wake turbulence regulation.
文摘In Japan,high-level radioactive waste and specific low-level radioactive waste which includes long-lived radionuclides are planned to be disposed of in the geological formations at depths greater than 300 m.The disposal site will be selected through a stepwise site investigation process that consists of a Literature Survey,Preliminary Investigation,and Detailed Investigation phases.In October 2020 a Literature Survey was launched in Japan at two municipalities in Hokkaido for the first time since NUMO initiated a nationwide call for volunteer municipalities in 2002,and the outcomes are currently being compiled.To enhance the public’s understanding of how to implement safe geological disposal in Japan based on the latest scientific knowledge and technology,NUMO,as the implementing organisation,developed and published a safety case for geological disposal at the pre-siting stage.This safety case provides multiple lines of arguments and evidence to demonstrate the feasibility of the geological disposal and a basic structure for a safety case that will be applicable to any potential sites in Japan.The safety case also presented some R&D challenges to enhance the technical confidence of the project,including the R&D topics related to rock mechanics.This report presents the current status of the geological disposal programme in Japan,together with the status of the Literature Survey phase and an overview of the NUMO safety case.