The occurrence of geological disasters can have a large impact on urban safety. Protecting people’s safety is the most important concern when disasters occur. Safety improvement requires a large amount of comprehensi...The occurrence of geological disasters can have a large impact on urban safety. Protecting people’s safety is the most important concern when disasters occur. Safety improvement requires a large amount of comprehensive and representative risk analysis and a large collection of information related to geological hazards, including unstructured knowledge and experience. To address the relevant information and support safety risk analysis, a geological hazard knowledge graph is developed automatically based on computer vision and domain-geoscience ontology to identify geological hazards from input images while obeying safety rules and regulations, even when affected by changes. In the implementation of the knowledge graph, we design an ontology schema of geological disasters based on a top-down approach, and by organizing knowledge as a logical semantic expression, it can be shared using ontology technologies and therefore enable semantic interoperability. Computer vision approaches are then used to automatically detect a set of entities and attributes, using the data from input images, and object types and their attributes are identified so that they can be stored in Neo4j for reasoning and searching. Finally, a reasoning model for geological hazard identification was developed using the Neo4j database to create nodes, relationships, and their properties for modeling, and geological hazards in the images can be automatically identified by searching the Neo4j database. An application on geological hazard is presented. The results show the effectiveness of the proposed approach in terms of identifying possible potential hazards in geological hazards and assisting in formulating targeted preventive measures.展开更多
基金the IUGS Deep-time Digital Earth (DDE) Big Science Programfinancially supported by the National Key R & D Program of China (No.2022YFF0711601)+3 种基金the Natural Science Foundation of Hubei Province of China (No.2022CFB640)the Opening Fund of Hubei Key Laboratory of Intelligent Vision-Based Monitoring for Hydroelectric Engineering (No.2022SDSJ04)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education (No.GLAB 2023ZR01)the Fundamental Research Funds for the Central Universities。
文摘The occurrence of geological disasters can have a large impact on urban safety. Protecting people’s safety is the most important concern when disasters occur. Safety improvement requires a large amount of comprehensive and representative risk analysis and a large collection of information related to geological hazards, including unstructured knowledge and experience. To address the relevant information and support safety risk analysis, a geological hazard knowledge graph is developed automatically based on computer vision and domain-geoscience ontology to identify geological hazards from input images while obeying safety rules and regulations, even when affected by changes. In the implementation of the knowledge graph, we design an ontology schema of geological disasters based on a top-down approach, and by organizing knowledge as a logical semantic expression, it can be shared using ontology technologies and therefore enable semantic interoperability. Computer vision approaches are then used to automatically detect a set of entities and attributes, using the data from input images, and object types and their attributes are identified so that they can be stored in Neo4j for reasoning and searching. Finally, a reasoning model for geological hazard identification was developed using the Neo4j database to create nodes, relationships, and their properties for modeling, and geological hazards in the images can be automatically identified by searching the Neo4j database. An application on geological hazard is presented. The results show the effectiveness of the proposed approach in terms of identifying possible potential hazards in geological hazards and assisting in formulating targeted preventive measures.