[Objective] To establish the traceability mechanism of agricultural products safety, and the application of promote domestic based software in the supervision area of agricultural products quality and safety. [Method]...[Objective] To establish the traceability mechanism of agricultural products safety, and the application of promote domestic based software in the supervision area of agricultural products quality and safety. [Method] Through the analysis on the circulation characteristics of agricultural products, like fruits, vegetables, livestock and poultry, the agricultural products quality safety management and traceability query business component libraries were designed. Based on the run-time-supporting environment provided by domestic based software, traceability management system of agricultural products quality and safety was constructed. [Result] The traceability management system provided the information interaction and comprehensive management platform of agricultural product quality and safety based on domestic based software for the government, enterprises and consumers. [Conclusion] Through the application demonstration, the quality control and information traceability of full circulation of agricultural products was achieved effective and reliably, and the management level of agricultural products quality and safety was improved.展开更多
A safety mechanism capable of moving at will within the range of its whole link lengths is designed based on the link space. Sixteen extreme poses are obtained in a Stewart platform. The singular points of the extreme...A safety mechanism capable of moving at will within the range of its whole link lengths is designed based on the link space. Sixteen extreme poses are obtained in a Stewart platform. The singular points of the extreme poses are solved by using homotopy method as well as the judgment condition of singular points, and thereby the maximum link lengths are achieved. The rotation angles of joints and the distances between two neighboring links are analyzed in a calculation example in which that the mechanism moves among the extreme poses is assumed. Then an algorithm to test the safety mechanism is presented taking the constraint conditions into account. A safety mechanism having optimal properties of global movement is worked out by optimizing all structural parameters through minimizing the average condition number of extreme poses.展开更多
Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress...Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.展开更多
The reliability and safety of the pneumatic ducts are essential for flight safety.A beam element model of the duct system is developed and the factors that impact the stress performance of the duct system are investig...The reliability and safety of the pneumatic ducts are essential for flight safety.A beam element model of the duct system is developed and the factors that impact the stress performance of the duct system are investigated,such as stress check standards,flight acceleration,internal temperature and internal pressure.The results show that the stress synthetic method as the stress check standard can obtain the more safety design results.The maximum stress of straight pipe is affected significantly by the acceleration in a plane perpendicular to straight pipe,while the maximum stress of bend pipe is greatly affected by the acceleration in the direction perpendicular to plane of the bend pipe.Meanwhile,internal pressure has little effect on the maximum stress of bend pipe and straight pipe.Temperature has little effect on the maximum stress of bend pipe while has a big impact on the maximum stress of straight pipe.展开更多
In order to optimise the safety of underground rock engineering construction and the long-term security of the resultant facilities, it is necessary to have a knowledge of the likely hazards. These risks or hazards fa...In order to optimise the safety of underground rock engineering construction and the long-term security of the resultant facilities, it is necessary to have a knowledge of the likely hazards. These risks or hazards fall into the four categories of 'known beforehand and relatively easily addressed', 'known beforehand and not easily addressed', 'not known beforehand and relatively easily addressed', and 'not known beforehand and not easily addressed'. This paper describes how these four types of hazard can be incorporated into a design methodology approach, including the process by which the relevant mechanical rock mass parameters can be recognised for modelling and hence predictive purposes. In particular, there is emphasis on the fact that information and judgement are the keys to safety——whether the hazards are known or unknown before construction proceeds.展开更多
Engineering designs for mountainous highways emphasize compliance checking to ensure safety. However, relying solely on compliance checking may lead designers to minimize costs at the expense of high risk indicators, ...Engineering designs for mountainous highways emphasize compliance checking to ensure safety. However, relying solely on compliance checking may lead designers to minimize costs at the expense of high risk indicators, since the overall risk level of the highway design is unknown to the designers. This paper describes a method for the simultaneous consideration of traffic safety risks and the associated cost burden related to the appropriate planning and design of a mountainous highway. The method can be carried out in four steps: First, the highway design is represented by a new parametric framework to extract the key design variables that affect not only the life-cycle cost but also the operational safety. Second, the relationship between the life-cycle cost and the operational safety risk factors is established in the cost-estimation functions. Third, a fault tree analysis (FTA) is introduced to identify the traffic risk factors from the design variables. The safety performance of the design solutions is also assessed by the generalized linear-regression model. Fourth, a theory of acceptable risk analysis is introduced to the traffic safety assessment, and a computing algorithm is proposed to solve for a cost-efficient optimal solution within the range of acceptable risk, in order to help decision-makers. This approach was applied and examined in the Sichuan–Tibet Highway engineering project, which is located in a complex area with a large elevation gradient and a wide range of mountains. The experimental results show that the proposed approach significantly improved both the safety and cost performance of the project in the study area.展开更多
In this feasibility study, we investigate the viability of using Liquefied Natural Gas (LNG) fuel in an open type Ro-Ro passenger ferry and the associated potential challenges with regard to the vessel safety system...In this feasibility study, we investigate the viability of using Liquefied Natural Gas (LNG) fuel in an open type Ro-Ro passenger ferry and the associated potential challenges with regard to the vessel safety systems. We recommend an appropriate methodology for converting existing ships to run on LNG fuel, discuss all the necessary modifications to the ship’s safety systems, and also evaluate the relevant ship evacuation procedures. We outline the basic requirements with which the ship already complies for each safety system and analyze the additional restrictions that must be taken into consideration for the use of LNG fuel. Appropriate actions are recommended. Furthermore, we carry out a hazard identification study. Overall, we clearly demonstrate the technical feasibility of the investigated scenario. Minimal modifications to the ship’s safety systems are required to comply with existing safety rules for this specific type of ship.展开更多
This paper describes a set of on-site earthquake safety evaluation systems for buildings, which were developed based on a network platform. The system embedded into the quantitative research results which were complet...This paper describes a set of on-site earthquake safety evaluation systems for buildings, which were developed based on a network platform. The system embedded into the quantitative research results which were completed in accordance with the provisions from Post-earthquake Field Works, Part 2: Safety Assessment of Buildings, GB18208.2 -2001, and was further developed into an easy-to-use software platform. The system is aimed at allowing engineering professionals, civil engineeing technicists or earthquake-affected victims on site to assess damaged buildings through a network after earthquakes. The authors studied the function structure, process design of the safety evaluation module, and hierarchical analysis algorithm module of the system in depth, and developed the general architecture design, development technology and database design of the system. Technologies such as hierarchical architecture design and Java EE were used in the system development, and MySQL5 was adopted in the database development. The result is a complete evaluation process of information collection, safety evaluation, and output of damage and safety degrees, as well as query and statistical analysis of identified buildings. The system can play a positive role in sharing expert post-earthquake experience and promoting safety evaluation of buildings on a seismic field.展开更多
In order to guarantee safety and stability during physical human-robot-interaction(p HRI) in the occasion of service or industrial operation, a serial integrated rotary joint with the characteristics of passive and ac...In order to guarantee safety and stability during physical human-robot-interaction(p HRI) in the occasion of service or industrial operation, a serial integrated rotary joint with the characteristics of passive and active compliance is proposed. Passive compliance is achieved by a designed elastic element, such that the compliant joint may minimize large force which occurs during accidental impacts and, further, may offer more accurate and stable force control and a capacity for energy storage. Meanwhile, the modeling of the compliant joint is comprehensively analyzed, including the effect of the motor model on the overall control system. In order to realize the active compliance, a new method of impedance control is proposed. On the basis of PD control, a more compliant impedance controller is introduced. Experimental results show that the serial integrated rotary joint can provide more effective safety compliance during physical interaction, which has also been well applied in our designed massage robot and rehabilitation robot.展开更多
The ITER Gas Injection System(GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nucl...The ITER Gas Injection System(GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control(I&C) functions.In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.展开更多
To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mo...To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.展开更多
Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the p...Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the personnel safety interlock system mainly considers measures to protect personnel from radiation hazards during beam preparation and the beam release process.Unlike other safety interlock systems,the personnel safety interlock system designed in this study focuses on the safety and stability of the system itself.The hardware and software of important interlock control loops are designed and developed according to the requirements of Safety Integrity Level 3 specified by IEC61508.A set of redundant ring networks was developed to ensure that damage to a certain network line does not affect the normal operation of the system.A set of friendly operation interfaces and data storage systems were developed to ensure that the operator can monitor the data in real time and trace the data.The personnel safety interlock system mainly includes a beam enabling function,clearance function,and emergency stop function.The system was put into actual use and successfully ensured personnel safety.展开更多
The Hefei Light Source-Ⅱ(HLS-Ⅱ) is a vacuum ultraviolet synchrotron light source. The personnel safety system (PSS), which is a personnel access control system, is a crucial part of the HLS-Ⅱ, as it protects the st...The Hefei Light Source-Ⅱ(HLS-Ⅱ) is a vacuum ultraviolet synchrotron light source. The personnel safety system (PSS), which is a personnel access control system, is a crucial part of the HLS-Ⅱ, as it protects the staff and users at HLS-Ⅱfrom radiation damages. The prior version of HLS-Ⅱ PSS was based on an access control system called SiPass. This lacked the personnel management function. Meanwhile, as the prior PSS is a turn-key system, it was not effective for sharing information. To overcome these drawbacks, the novel design of PSS for HLS-Ⅱ is proposed based on the Siemens redundant programmable logic controller under the Experimental Physics and Industrial Control System. The proposed PSS consists of a safety interlock system, access control system, and a radiation monitoring system. The safety interlock system is used to define the interlock logic. The access control system is designed to restrict the access of staff and users at HLS-Ⅱ, and to provide a personnel management function. The radiation monitoring system is used to monitor the radiation dose rate in both the light source and the surrounding areas. This paper details the architecture and the specific design of the novel PSS. The off-line test results demonstrate that the proposed system has achieved the design objectives.展开更多
As further promotion of the rural drinking water safety project in whole country, small villages in vast countryside have been or will be equipped with safety drinking water project. We analyzed necessity of the rural...As further promotion of the rural drinking water safety project in whole country, small villages in vast countryside have been or will be equipped with safety drinking water project. We analyzed necessity of the rural drinking water disinfection, discussed disinfection method suitable for rural drinking water characteristics, and put forward disinfection schemes for different water supply sources.展开更多
Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(...Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.展开更多
Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ...Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.展开更多
Bumper beam is one of the key structural parts,which plays an important role in the frontal crashes of automobile.With the global trend of light-weighted automotive parts,the light weight of bumper beam attracts exten...Bumper beam is one of the key structural parts,which plays an important role in the frontal crashes of automobile.With the global trend of light-weighted automotive parts,the light weight of bumper beam attracts extensive attention of automobile manufacturers,and hot stamping technology with significant weight advantage has become one of the main light weight measures for bumper beam.The quasi-static press,low speed crash and frontal crash simulation models of bumper beam were established according to its actual working conditions in the automobile crashes.The feasibility of replacing normal steel bumper beam with hot stamping bumper beam was analyzed.Meanwhile,the stiffeners in the front face of hot stamping bumper beam were optimized with topography optimization in order to further improve its performances.展开更多
基金Supported by Common Chips and Basic Software Products(2010ZX01045-001-004-3)~~
文摘[Objective] To establish the traceability mechanism of agricultural products safety, and the application of promote domestic based software in the supervision area of agricultural products quality and safety. [Method] Through the analysis on the circulation characteristics of agricultural products, like fruits, vegetables, livestock and poultry, the agricultural products quality safety management and traceability query business component libraries were designed. Based on the run-time-supporting environment provided by domestic based software, traceability management system of agricultural products quality and safety was constructed. [Result] The traceability management system provided the information interaction and comprehensive management platform of agricultural product quality and safety based on domestic based software for the government, enterprises and consumers. [Conclusion] Through the application demonstration, the quality control and information traceability of full circulation of agricultural products was achieved effective and reliably, and the management level of agricultural products quality and safety was improved.
文摘A safety mechanism capable of moving at will within the range of its whole link lengths is designed based on the link space. Sixteen extreme poses are obtained in a Stewart platform. The singular points of the extreme poses are solved by using homotopy method as well as the judgment condition of singular points, and thereby the maximum link lengths are achieved. The rotation angles of joints and the distances between two neighboring links are analyzed in a calculation example in which that the mechanism moves among the extreme poses is assumed. Then an algorithm to test the safety mechanism is presented taking the constraint conditions into account. A safety mechanism having optimal properties of global movement is worked out by optimizing all structural parameters through minimizing the average condition number of extreme poses.
基金supported by China National Petroleum Corporation Application Fundamental Research Foundation (Grant No. 07A40401)
文摘Many years experience of the operation of high stress (>72% specified minimum yield strength, SMYS) gas pipelines and statistical analysis results of pipeline incidents showed that the operating pipelines at stress levels over 72% SMYS have not presented problems in USA and Canada, and design factor does not control incidents or the safety of pipelines. Enhancing pipeline safety management level is most important for decreasing incident rate. The application history of higher design factors in the U.S and Canada was reviewed. And the effect of higher factors to the critical flaw size, puncture resistance, change of reliability with time, risk level and the arrest toughness requirements of pipeline were analyzed here. The comparison of pipeline failure rates and risk levels between two design factors (0.72 and 0.8) has shown that a change in design factor from 0.72 to 0.8 would bring little effect on failure rates and risk levels. On the basis of the analysis result, the application feasibility of design factor of 0.8 in China was discussed and the related suggestions were proposed. When an operator wishes to apply design factor 0.8 to gas pipeline, the following process is recommended: stress level of line pipe hydro test should be up to 100% SMYS, reliability and risk assessment at the design feasibility or conceptual stage should be conducted, Charpy impact energy should meet the need of pipeline crack arrest; and establish and execute risk based integrity management plan. The technology of pipeline steel metallurgy, line pipe fabrication and pipeline construction, and line pipe quality control level in China achieved tremendous progresses, and line pipe product standards and property indexes have come up to international advanced level. Furthermore, pipeline safety management has improved greatly in China. Consequently, the research for the feasibility of application of design factor of 0.8 in China has fundamental basis.
文摘The reliability and safety of the pneumatic ducts are essential for flight safety.A beam element model of the duct system is developed and the factors that impact the stress performance of the duct system are investigated,such as stress check standards,flight acceleration,internal temperature and internal pressure.The results show that the stress synthetic method as the stress check standard can obtain the more safety design results.The maximum stress of straight pipe is affected significantly by the acceleration in a plane perpendicular to straight pipe,while the maximum stress of bend pipe is greatly affected by the acceleration in the direction perpendicular to plane of the bend pipe.Meanwhile,internal pressure has little effect on the maximum stress of bend pipe and straight pipe.Temperature has little effect on the maximum stress of bend pipe while has a big impact on the maximum stress of straight pipe.
文摘In order to optimise the safety of underground rock engineering construction and the long-term security of the resultant facilities, it is necessary to have a knowledge of the likely hazards. These risks or hazards fall into the four categories of 'known beforehand and relatively easily addressed', 'known beforehand and not easily addressed', 'not known beforehand and relatively easily addressed', and 'not known beforehand and not easily addressed'. This paper describes how these four types of hazard can be incorporated into a design methodology approach, including the process by which the relevant mechanical rock mass parameters can be recognised for modelling and hence predictive purposes. In particular, there is emphasis on the fact that information and judgement are the keys to safety——whether the hazards are known or unknown before construction proceeds.
基金the National Natural Science Foundation of China (71732001, 51878311, and 51678265)the Research Project of the Chinese Academy of Engineering (2017-XZ-12).
文摘Engineering designs for mountainous highways emphasize compliance checking to ensure safety. However, relying solely on compliance checking may lead designers to minimize costs at the expense of high risk indicators, since the overall risk level of the highway design is unknown to the designers. This paper describes a method for the simultaneous consideration of traffic safety risks and the associated cost burden related to the appropriate planning and design of a mountainous highway. The method can be carried out in four steps: First, the highway design is represented by a new parametric framework to extract the key design variables that affect not only the life-cycle cost but also the operational safety. Second, the relationship between the life-cycle cost and the operational safety risk factors is established in the cost-estimation functions. Third, a fault tree analysis (FTA) is introduced to identify the traffic risk factors from the design variables. The safety performance of the design solutions is also assessed by the generalized linear-regression model. Fourth, a theory of acceptable risk analysis is introduced to the traffic safety assessment, and a computing algorithm is proposed to solve for a cost-efficient optimal solution within the range of acceptable risk, in order to help decision-makers. This approach was applied and examined in the Sichuan–Tibet Highway engineering project, which is located in a complex area with a large elevation gradient and a wide range of mountains. The experimental results show that the proposed approach significantly improved both the safety and cost performance of the project in the study area.
基金conducted within the framework of the project LNG-COMSHIP,Greek General Secretariat of Research and Technology Code:12CHN400,and was funded by the European Regional Development Fund(ERDF) and National Resources
文摘In this feasibility study, we investigate the viability of using Liquefied Natural Gas (LNG) fuel in an open type Ro-Ro passenger ferry and the associated potential challenges with regard to the vessel safety systems. We recommend an appropriate methodology for converting existing ships to run on LNG fuel, discuss all the necessary modifications to the ship’s safety systems, and also evaluate the relevant ship evacuation procedures. We outline the basic requirements with which the ship already complies for each safety system and analyze the additional restrictions that must be taken into consideration for the use of LNG fuel. Appropriate actions are recommended. Furthermore, we carry out a hazard identification study. Overall, we clearly demonstrate the technical feasibility of the investigated scenario. Minimal modifications to the ship’s safety systems are required to comply with existing safety rules for this specific type of ship.
基金Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-10Project of Earthquake Code Compilation and Revising:Postearthquake Field Works-Part 2:Safety Assessment of Buildings under Grant No.14410024701Basic Scientific Research Special Project of IEM,CEA under Grant No.2009A01
文摘This paper describes a set of on-site earthquake safety evaluation systems for buildings, which were developed based on a network platform. The system embedded into the quantitative research results which were completed in accordance with the provisions from Post-earthquake Field Works, Part 2: Safety Assessment of Buildings, GB18208.2 -2001, and was further developed into an easy-to-use software platform. The system is aimed at allowing engineering professionals, civil engineeing technicists or earthquake-affected victims on site to assess damaged buildings through a network after earthquakes. The authors studied the function structure, process design of the safety evaluation module, and hierarchical analysis algorithm module of the system in depth, and developed the general architecture design, development technology and database design of the system. Technologies such as hierarchical architecture design and Java EE were used in the system development, and MySQL5 was adopted in the database development. The result is a complete evaluation process of information collection, safety evaluation, and output of damage and safety degrees, as well as query and statistical analysis of identified buildings. The system can play a positive role in sharing expert post-earthquake experience and promoting safety evaluation of buildings on a seismic field.
基金Project(81473694)supported by the National Natural Science Foundation of ChinaProject(2016A1027)supported by the major Project of Zhongshan City,ChinaProject(2016FZFC007)supported by the Intelligent Equipment and Technology of Automation Research and Development Platform,China
文摘In order to guarantee safety and stability during physical human-robot-interaction(p HRI) in the occasion of service or industrial operation, a serial integrated rotary joint with the characteristics of passive and active compliance is proposed. Passive compliance is achieved by a designed elastic element, such that the compliant joint may minimize large force which occurs during accidental impacts and, further, may offer more accurate and stable force control and a capacity for energy storage. Meanwhile, the modeling of the compliant joint is comprehensively analyzed, including the effect of the motor model on the overall control system. In order to realize the active compliance, a new method of impedance control is proposed. On the basis of PD control, a more compliant impedance controller is introduced. Experimental results show that the serial integrated rotary joint can provide more effective safety compliance during physical interaction, which has also been well applied in our designed massage robot and rehabilitation robot.
文摘The ITER Gas Injection System(GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control(I&C) functions.In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.
基金supported by the National Natural Science Foundation of China (Grant No. 50539010, 50539110, 50579010, 50539030 and 50809025)
文摘To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.
文摘Proton therapy is the most advanced radiotherapy approach in the world,and causes less damage to normal human tissue than traditional radiotherapy.Because the treatment process produces a high-energy proton beam,the personnel safety interlock system mainly considers measures to protect personnel from radiation hazards during beam preparation and the beam release process.Unlike other safety interlock systems,the personnel safety interlock system designed in this study focuses on the safety and stability of the system itself.The hardware and software of important interlock control loops are designed and developed according to the requirements of Safety Integrity Level 3 specified by IEC61508.A set of redundant ring networks was developed to ensure that damage to a certain network line does not affect the normal operation of the system.A set of friendly operation interfaces and data storage systems were developed to ensure that the operator can monitor the data in real time and trace the data.The personnel safety interlock system mainly includes a beam enabling function,clearance function,and emergency stop function.The system was put into actual use and successfully ensured personnel safety.
基金supported by the National Natural Science Foundation of China(No.113751861)
文摘The Hefei Light Source-Ⅱ(HLS-Ⅱ) is a vacuum ultraviolet synchrotron light source. The personnel safety system (PSS), which is a personnel access control system, is a crucial part of the HLS-Ⅱ, as it protects the staff and users at HLS-Ⅱfrom radiation damages. The prior version of HLS-Ⅱ PSS was based on an access control system called SiPass. This lacked the personnel management function. Meanwhile, as the prior PSS is a turn-key system, it was not effective for sharing information. To overcome these drawbacks, the novel design of PSS for HLS-Ⅱ is proposed based on the Siemens redundant programmable logic controller under the Experimental Physics and Industrial Control System. The proposed PSS consists of a safety interlock system, access control system, and a radiation monitoring system. The safety interlock system is used to define the interlock logic. The access control system is designed to restrict the access of staff and users at HLS-Ⅱ, and to provide a personnel management function. The radiation monitoring system is used to monitor the radiation dose rate in both the light source and the surrounding areas. This paper details the architecture and the specific design of the novel PSS. The off-line test results demonstrate that the proposed system has achieved the design objectives.
基金Supported by Science and Technology Plan Project in Nanning City,China(20131064)
文摘As further promotion of the rural drinking water safety project in whole country, small villages in vast countryside have been or will be equipped with safety drinking water project. We analyzed necessity of the rural drinking water disinfection, discussed disinfection method suitable for rural drinking water characteristics, and put forward disinfection schemes for different water supply sources.
基金Project(20100480964) supported by China Postdoctoral Science FoundationProjects(2002AA420090,2008AA092301) supported by the National High Technology Research and Development Program of China
文摘Plenty of dams in China are in danger while there are few effective methods for underwater dam inspections of hidden problems such as conduits,cracks and inanitions.The dam safety inspection remotely operated vehicle(DSIROV) is designed to solve these problems which can be equipped with many advanced sensors such as acoustical,optical and electrical sensors for underwater dam inspection.A least-square parameter estimation method is utilized to estimate the hydrodynamic coefficients of DSIROV,and a four degree-of-freedom(DOF) simulation system is constructed.The architecture of DSIROV's motion control system is introduced,which includes hardware and software structures.The hardware based on PC104 BUS,uses AMD ELAN520 as the controller's embedded CPU and all control modules work in VxWorks real-time operating system.Information flow of the motion system of DSIROV,automatic control of dam scanning and dead-reckoning algorithm for navigation are also discussed.The reliability of DSIROV's control system can be verified and the control system can fulfill the motion control mission because embankment checking can be demonstrated by the lake trials.
文摘Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.
文摘Bumper beam is one of the key structural parts,which plays an important role in the frontal crashes of automobile.With the global trend of light-weighted automotive parts,the light weight of bumper beam attracts extensive attention of automobile manufacturers,and hot stamping technology with significant weight advantage has become one of the main light weight measures for bumper beam.The quasi-static press,low speed crash and frontal crash simulation models of bumper beam were established according to its actual working conditions in the automobile crashes.The feasibility of replacing normal steel bumper beam with hot stamping bumper beam was analyzed.Meanwhile,the stiffeners in the front face of hot stamping bumper beam were optimized with topography optimization in order to further improve its performances.