Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such ...Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.展开更多
This research aims to examine the risk in the technology design of fast breeder reactors while the development depends on safety considerations. The project explored the variables, which could affect positively the ex...This research aims to examine the risk in the technology design of fast breeder reactors while the development depends on safety considerations. The project explored the variables, which could affect positively the expected average fuel burn-up, breeding ratio, and decay heat removal. That is accomplished using features such as guard vessels and elevated pipe routing to prevent the cracked state of both core components and fuel cladding interface conditions. So, the cracked region of fuel was detected by thermal-hydraulic analysis. We used ZrFeCr alloys to estimating of the rise in fuel cladding and coolant that can be incorporated in the design ZrFeCr alloys to uniform corrosion in temperature and 10.3 Mpa pressure. Fast creep of the reactor vessel during the coolant heat-up transient is another issue to be considered corrosion resistance of structural material can be achieved by controlling oxygen content in steel alloy. In this trend, S4337 S5140 steels are wide and can be used in future fossil power plants because of their excellent high-temperature strength.展开更多
BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has ...BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has examined the safety and efficacy of using butorphanol as an epidural analgesic during labor.AIM To assess butorphanol's safety and efficacy for epidural labor analgesia.METHODS The PubMed,Cochrane Library,EMBASE,Web of Science,China National Knowledge Infrastructure,and Google Scholar databases will be searched from inception.Other types of literature,such as conference abstracts and references to pertinent reviews,will also be reviewed.We will include randomized controlled trials comparing butorphanol with other opioids combined with local anesthetics for epidural analgesia during labor.There will be no language restrictions.The primary outcomes will include the visual analog scale score for the first stage of labor,fetal effects,and Apgar score.Two independent reviewers will evaluate the full texts,extract data,and assess the risk of bias.Publication bias will be evaluated using Egger's or Begg's tests as well as visual analysis of a funnel plot,and heterogeneity will be evaluated using the Cochran Q test,P values,and I2 values.Meta-analysis,subgroup analysis,and sensitivity analysis will be performed using RevMan software version 5.4.This protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)Protocols statement,and the PRISMA statement will be used for the systematic review.RESULTS This study provides reliable information regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.CONCLUSION To support clinical practice and development,this study provides evidence-based findings regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.展开更多
In recent years,the growth of female employees in the commercial market and industries has increased.As a result,some people think travelling to distant and isolated locations during odd hours generates new threats to...In recent years,the growth of female employees in the commercial market and industries has increased.As a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s safety.The exponential increase in assaults and attacks on women,on the other hand,is posing a threat to women’s growth,development,and security.At the time of the attack,it appears the women were immobilized and needed immediate support.Only self-defense isn’t sufficient against abuse;a new technological solution is desired and can be used as quickly as hitting a switch or button.The proposed Women Safety Gadget(WSG)aims to design a wearable safety device model based on Internet-of-Things(IoT)and Cloud Technology.It is designed in three layers,namely layer-1,having an android app;layer-2,with messaging and location tracking system;and layer-3,which updates information in the cloud database.WSG can detect an unsafe condition by the pressure sensor of the finger on the artificial nail,consequently diffuses a pepper spray,and automatically notifies the saved closest contacts and police station through messaging and location settings.WSG has a response time of 1000 ms once the nail is pressed;the average time for pulse rate measure is 0.475 s,and diffusing the pepper spray is 0.2–0.5 s.The average activation time is 2.079 s.展开更多
Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-...Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.展开更多
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction...Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements ...Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.展开更多
To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular me...To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.展开更多
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high...Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.展开更多
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and...Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.展开更多
The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wid...The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wider spread adoption will only increase the prevalence of these failure events unless there is a step change in the management and design of BESS.To understand the causes of failure,the main challenges of BESS safety are summarised.BESS consequences and failure events are discussed,including specific focus on the chain of events causing thermal runaway,and a case study of a BESS explosion in Surprise Arizona is analysed.Based on the technology and past events,a paradigm shift is required to improve BESS safety.In this review,a holistic approach is proposed.This combines currently adopted approaches including battery cell testing,lumped cell mathematical modelling,and calorimetry,alongside additional measures taken to ensure BESS safety including the requirement for computational fluid dynamics and kinetic modelling,assessment of installation level testing of the full BESS system and not simply a single cell battery test,hazard and layers of protection analysis,gas chromatography,and composition testing.The holistic approach proposed in this study aims to address challenges of BESS safety and form the basis of a paradigm shift in the safety management and design of these systems.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety ...Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.展开更多
文摘Research reactors with neutron fluxes higher than 10^(14) n cm^(−2) s^(−1) are widely used in nuclear fuel and material irradiation,neutron-based scientific research,and medical and industrial isotope production.Such high flux research reactors are not only important scientific research facilities for the development of nuclear energy but also represent the national comprehensive technical capability.China has several high flux research reactors that do not satisfy the requirements of nuclear energy development.A high flux research reactor has the following features:a compact core arrangement,high power density,plate-type fuel elements,a short refueling cycle,and high coolant velocity in the core.These characteristics make it difficult to simultaneously realize high neutron flux and optimal safety margin.A new multi-mission high flux research reactor was designed by the Institute of Nuclear and New Energy Technology at Tsinghua University in China;the reactor can simul-taneously realize an average neutron flux higher than 2.0×10^(15) n cm^(−2) s^(−1) and fulfill the current safety criterion.This high flux research reactor features advanced design concepts and has sufficient safety margins according to the preliminary safety analysis.Based on the analysis of the station blackout accident,loss of coolant accident,and reactivity accident of a single-control drum rotating out accidently,the maximum temperature of the cladding surface,minimum departure from nucleate boiling ratio,and temperature difference to the onset of nucleate boiling temperature satisfy the design limits.
文摘This research aims to examine the risk in the technology design of fast breeder reactors while the development depends on safety considerations. The project explored the variables, which could affect positively the expected average fuel burn-up, breeding ratio, and decay heat removal. That is accomplished using features such as guard vessels and elevated pipe routing to prevent the cracked state of both core components and fuel cladding interface conditions. So, the cracked region of fuel was detected by thermal-hydraulic analysis. We used ZrFeCr alloys to estimating of the rise in fuel cladding and coolant that can be incorporated in the design ZrFeCr alloys to uniform corrosion in temperature and 10.3 Mpa pressure. Fast creep of the reactor vessel during the coolant heat-up transient is another issue to be considered corrosion resistance of structural material can be achieved by controlling oxygen content in steel alloy. In this trend, S4337 S5140 steels are wide and can be used in future fossil power plants because of their excellent high-temperature strength.
文摘BACKGROUND Epidural analgesia is the most effective analgesic method during labor.Butorphanol administered epidurally has been shown to be a successful analgesic method during labor.However,no comprehensive study has examined the safety and efficacy of using butorphanol as an epidural analgesic during labor.AIM To assess butorphanol's safety and efficacy for epidural labor analgesia.METHODS The PubMed,Cochrane Library,EMBASE,Web of Science,China National Knowledge Infrastructure,and Google Scholar databases will be searched from inception.Other types of literature,such as conference abstracts and references to pertinent reviews,will also be reviewed.We will include randomized controlled trials comparing butorphanol with other opioids combined with local anesthetics for epidural analgesia during labor.There will be no language restrictions.The primary outcomes will include the visual analog scale score for the first stage of labor,fetal effects,and Apgar score.Two independent reviewers will evaluate the full texts,extract data,and assess the risk of bias.Publication bias will be evaluated using Egger's or Begg's tests as well as visual analysis of a funnel plot,and heterogeneity will be evaluated using the Cochran Q test,P values,and I2 values.Meta-analysis,subgroup analysis,and sensitivity analysis will be performed using RevMan software version 5.4.This protocol was developed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)Protocols statement,and the PRISMA statement will be used for the systematic review.RESULTS This study provides reliable information regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.CONCLUSION To support clinical practice and development,this study provides evidence-based findings regarding the safety and efficacy of using butorphanol as an epidural analgesic during labor.
基金The authors extend their appreciation to the deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through project number(IFP-2020-19).
文摘In recent years,the growth of female employees in the commercial market and industries has increased.As a result,some people think travelling to distant and isolated locations during odd hours generates new threats to women’s safety.The exponential increase in assaults and attacks on women,on the other hand,is posing a threat to women’s growth,development,and security.At the time of the attack,it appears the women were immobilized and needed immediate support.Only self-defense isn’t sufficient against abuse;a new technological solution is desired and can be used as quickly as hitting a switch or button.The proposed Women Safety Gadget(WSG)aims to design a wearable safety device model based on Internet-of-Things(IoT)and Cloud Technology.It is designed in three layers,namely layer-1,having an android app;layer-2,with messaging and location tracking system;and layer-3,which updates information in the cloud database.WSG can detect an unsafe condition by the pressure sensor of the finger on the artificial nail,consequently diffuses a pepper spray,and automatically notifies the saved closest contacts and police station through messaging and location settings.WSG has a response time of 1000 ms once the nail is pressed;the average time for pulse rate measure is 0.475 s,and diffusing the pepper spray is 0.2–0.5 s.The average activation time is 2.079 s.
基金the Natural Science Foundation of China(Grant No:22309180)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No:XDB0600000,XDB0600400)+3 种基金Liaoning Binhai Laboratory,(Grant No:LILBLB-2023-04)Dalian Revitalization Talents Program(Grant No:2022RG01)Youth Science and Technology Foundation of Dalian(Grant No:2023RQ015)the University of Waterloo.
文摘Zinc-air batteries(ZABs)are promising energy storage systems because of high theoretical energy density,safety,low cost,and abundance of zinc.However,the slow multi-step reaction of oxygen and heavy reliance on noble-metal catalysts hinder the practical applications of ZABs.Therefore,feasible and advanced non-noble-metal elec-trocatalysts for air cathodes need to be identified to promote the oxygen catalytic reaction.In this review,we initially introduced the advancement of ZABs in the past two decades and provided an overview of key developments in this field.Then,we discussed the work-ing mechanism and the design of bifunctional electrocatalysts from the perspective of morphology design,crystal structure tuning,interface strategy,and atomic engineering.We also included theoretical studies,machine learning,and advanced characterization technologies to provide a comprehensive understanding of the structure-performance relationship of electrocatalysts and the reaction pathways of the oxygen redox reactions.Finally,we discussed the challenges and prospects related to designing advanced non-noble-metal bifunctional electrocatalysts for ZABs.
基金S.G.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 52272144,51972076)the Heilongjiang Provincial Natural Science Foundation of China(JQ2022E001)+4 种基金the Natural Science Foundation of Shandong Province(ZR2020ZD42)the Fundamental Research Funds for the Central Universities.H.D.acknowledges the financial support from the National Natural Science Foundation of China(NSFC 22205048)China Postdoctoral Science Foundation(2022M710931 and 2023T160154)Heilongjiang Postdoctoral Science Foundation(LBH-Z22010)G.Y.acknowledges the financial support from the National Science Foundation of Heilongjiang Education Department(324022075).
文摘Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007,nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity,low cost,mild reaction conditions,good stability,and suitable for large-scale production.Recently,with the cross fusion of nanomedicine and nanocatalysis,nanozyme-based theranostic strategies attract great attention,since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects.Thus,various nanozymes have been developed and used for tumor therapy.In this review,more than 270 research articles are discussed systematically to present progress in the past five years.First,the discovery and development of nanozymes are summarized.Second,classification and catalytic mechanism of nanozymes are discussed.Third,activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory,machine learning,biomimetic and chemical design.Then,synergistic theranostic strategy of nanozymes are introduced.Finally,current challenges and future prospects of nanozymes used for tumor theranostic are outlined,including selectivity,biosafety,repeatability and stability,in-depth catalytic mechanism,predicting and evaluating activities.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金The work described in this paper was fully supported by a Grant from the City University of Hong Kong(Project No.9610641).
文摘Electrolyte design holds the greatest opportunity for the development of batteries that are capable of sub-zero temperature operation.To get the most energy storage out of the battery at low temperatures,improvements in electrolyte chemistry need to be coupled with optimized electrode materials and tailored electrolyte/electrode interphases.Herein,this review critically outlines electrolytes’limiting factors,including reduced ionic conductivity,large de-solvation energy,sluggish charge transfer,and slow Li-ion transportation across the electrolyte/electrode interphases,which affect the low-temperature performance of Li-metal batteries.Detailed theoretical derivations that explain the explicit influence of temperature on battery performance are presented to deepen understanding.Emerging improvement strategies from the aspects of electrolyte design and electrolyte/electrode interphase engineering are summarized and rigorously compared.Perspectives on future research are proposed to guide the ongoing exploration for better low-temperature Li-metal batteries.
文摘To overcome the limitations of traditional experimental“trial and error”methods in lubricant additive design,a new molecular design method based on molecular structure parameters is established here.The molecular mechanism of the antioxidant reaction of hindered phenol,diphenylamine,and alkyl sulfide are studied via molecular simulations.Calculation results show that the strong electron-donating ability and high hydrogen-donating activity of the antioxidant molecule and the low hydrogen-abstracting activity of free radicals formed after dehydrogenation are the internal molecular causes of the shielding of phenol and diphenylamine from scavenging peroxy free radicals,and the strong electron-donating ability is the internal molecular cause of the high activity of thioether in decomposing alkyl hydrogen peroxide.Based on this antioxidant molecular mechanism,a molecular design rule of antioxidant is proposed,namely“high EHOMO,large Q(S),low bond dissociation energy BDE(O—H)and BDE(N—H)”.Two new antioxidants,PAS-I and PAS-II,are designed and prepared by chemical bonding of hindered phenol,diphenylamine,and sulfur atoms.Experimental results show that these antioxidants both have excellent antioxidant effects in lubricating oil,and that PAS-II is the superior antioxidant,consistent with theoretical predictions.
基金the National Natural Science Foundation of China(21962008)Yunnan Province Excellent Youth Fund Project(202001AW070005)+1 种基金Candidate Talents Training Fund of Yunnan Province(2017PY269SQ,2018HB007)Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-346).
文摘Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed.
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
基金supported by the Natural Science Foundation of China(52272188,U22A20227)the Natural Science Foundation of Beijing(2232025)+2 种基金the Natural Science Foundation of Chongqing(2022NSCQ-MSX2179)the Department of Science and Technology of Henan Province(Z20221343029)the Experimental Center of Advanced Materials in Beijing Institute of Technology。
文摘Sodium-ion batteries(SIBs)with advantages of abundant resource and low cost have emerged as promising candidates for the next-generation energy storage systems.However,safety issues existing in electrolytes,anodes,and cathodes bring about frequent accidents regarding battery fires and explosions and impede the development of high-performance SIBs.Therefore,safety analysis and high-safety battery design have become prerequisites for the development of advanced energy storage systems.The reported reviews that only focus on a specific issue are difficult to provide overall guidance for building high-safety SIBs.To overcome the limitation,this review summarizes the recent research progress from the perspective of key components of SIBs for the first time and evaluates the characteristics of various improvement strategies.By orderly analyzing the root causes of safety problems associated with different components in SIBs(including electrolytes,anodes,and cathodes),corresponding improvement strategies for each component were discussed systematically.In addition,some noteworthy points and perspectives including the chain reaction between security issues and the selection of improvement strategies tailored to different needs have also been proposed.In brief,this review is designed to deepen our understanding of the SIBs safety issues and provide guidance and assistance for designing high-safety SIBs.
文摘The integration of battery energy storage systems(BESS)throughout our energy chain poses concerns regarding safety,especially since batteries have high energy density and numerous BESS failure events have occurred.Wider spread adoption will only increase the prevalence of these failure events unless there is a step change in the management and design of BESS.To understand the causes of failure,the main challenges of BESS safety are summarised.BESS consequences and failure events are discussed,including specific focus on the chain of events causing thermal runaway,and a case study of a BESS explosion in Surprise Arizona is analysed.Based on the technology and past events,a paradigm shift is required to improve BESS safety.In this review,a holistic approach is proposed.This combines currently adopted approaches including battery cell testing,lumped cell mathematical modelling,and calorimetry,alongside additional measures taken to ensure BESS safety including the requirement for computational fluid dynamics and kinetic modelling,assessment of installation level testing of the full BESS system and not simply a single cell battery test,hazard and layers of protection analysis,gas chromatography,and composition testing.The holistic approach proposed in this study aims to address challenges of BESS safety and form the basis of a paradigm shift in the safety management and design of these systems.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+1 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028).
文摘Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.