期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
变道约束下近邻交织区交通均衡组织方法 被引量:4
1
作者 马庆禄 乔娅 冯敏 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第4期164-171,共8页
针对相邻较近的交织区车辆持续交织运行特点,以提高交织区通行效率及交通安全为目标,提出一种基于变道约束下近邻交织区交通均衡组织方法,旨在计算不同时段交通量所对应近邻各交织区的最佳提前变道诱导距离,以减少近邻交织区车辆相互干... 针对相邻较近的交织区车辆持续交织运行特点,以提高交织区通行效率及交通安全为目标,提出一种基于变道约束下近邻交织区交通均衡组织方法,旨在计算不同时段交通量所对应近邻各交织区的最佳提前变道诱导距离,以减少近邻交织区车辆相互干扰,降低平均交通延误,提高道路通行效率.对重庆市海峡路两段近邻交织区的日均交通量(4 092 pcu/h),早高峰时段交通量(5 340 pcu/h),晚高峰时段交通量(4 596 pcu/h),以及年均交通量(3 276 pcu/h)进行仿真建模分析.实验选取近邻交织区内累计平均延误作为近邻交织区的评价指标,利用仿真软件(Vissim 4.3)持续仿真40次.结果表明,最佳提前变道约束距离为交织区长度的60%,其相应的平均交通延误分别降低了57%、73%、63%和72%. 展开更多
关键词 交通工程 近邻交织区 均衡理论 平均交通延误 交通安全
下载PDF
Driver mental load identification model Adapting to Urban Road Traffic Scenarios
2
作者 Jing Huang Wei Wei +2 位作者 Xiaoyan Peng Lin Hu Huiqin Chen 《Transportation Safety and Environment》 EI 2023年第4期8-16,共9页
load model established in a road traffic scene is difficult to adapt to the changes of the surrounding road environment during the actual Objective:At present,most research on driver mental load identification is base... load model established in a road traffic scene is difficult to adapt to the changes of the surrounding road environment during the actual Objective:At present,most research on driver mental load identification is based on a single driving scene.However,the driver mental driving process.We proposed a driver mental load identification model which adapts to urban road traffie scenarios.scene discrimination sub-model can quickly and accurately determine the road traffic scene.The driver load identification sub-model Methods:The model includes a driving scene discrimination sub-model and driver load identification sub-model,in which the driving sub-model.selects the best feature subset and the best model algorithm in the scene based on the judgement of the driving scene classification Results:The results show that the driving scene discrimination sub-model using five vehicle features as feature subsets has the best performance.The driver load identification sub-model based on the best feature subset reduces the feature noise,and the recognition tends to be consistent,and the support vector machine(5VM)algorithm is better than the K-nearest neighbors(KNN)algorithm.effect is better than the feature set using a single source signal and all data.The best recognition algorithm in different scenarios Conclusion:The proposed driver mental load identificution model can discriminate the driving scene quickly and accurately,and then identify the driver mental load.In this way,our model can be more suitable for actual driving and improve the effect of driver mental load identification. 展开更多
关键词 traffic safety driver’s mental load multi-source signal data support vector machine(SVM) k-nearest neighbors(KNN)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部