The main objective of the work presented in this paper was to develop a customized safety training program that can be incorporated into the demolition projects undertaken as part of blight reduction efforts in urban ...The main objective of the work presented in this paper was to develop a customized safety training program that can be incorporated into the demolition projects undertaken as part of blight reduction efforts in urban centers. A subsidiary objective was to devise and implement a safety program evaluation methodology, and gain insights on the relationships between knowledge acquisition through training and trainee demographics. Salient aspects of blight elimination efforts, as well as the main facets of building demolition practices and requirements, were reviewed. Information on various related safety and health hazards was studied in depth with a focus on demolition operations dealing with blighted properties. A unique safety hazard awareness training program was created for demolition workers, contractors and inspectors based on this research. In addition to devising a curriculum of relevant training topics along with traditional and online delivery systems to be employed, effectiveness evaluation instruments were formulated. Based on the limited data collected from the trainees it was concluded that the program was well-received by them and provided effective learning. It was also found that no statistically significant associations existed between the knowledge gain of the trainees, and either their experience level or union status, after taking this training.展开更多
Surgical management of diseases is recognised as a major unmet need in low and middle-income countries(LMICs). Laparoscopic surgery has been present since the 1980 s and offers the benefit of minimising the morbidity ...Surgical management of diseases is recognised as a major unmet need in low and middle-income countries(LMICs). Laparoscopic surgery has been present since the 1980 s and offers the benefit of minimising the morbidity and potential mortality associated with laparotomies. Laparotomies are often carried out in LMICs for diagnosis and management, due to lack of radiological investigative and intervention options. The use of laparoscopy for diagnosis and treatment is globally variable, with highincome countries using laparoscopy routinely compared with LMICs. The specific advantages of minimally invasive surgery such as lower surgical site infections and earlier return to work are of great benefit for patients in LMICs, as time lost not working could result in a family not being able to sustain themselves. Laparoscopic surgery and training is not cheap. Cost is a major barrier to healthcare access for a significant population in LMICs. Therefore, cost is usually seen as a major barrier for laparoscopic surgery to be integrated into routine practice in LMICs. The aim of this review is to focus on the practice, training and safety of laparoscopic surgery in LMICs. In addition it highlights the barriers to progress in adopting laparoscopic surgery in LMICs and how to address them.展开更多
Food safety,specifically in restaurants,is becoming a key public health priority because of the increased number of meals eaten outside the home.Foodborne illness prevention thus is a significant concern and a public ...Food safety,specifically in restaurants,is becoming a key public health priority because of the increased number of meals eaten outside the home.Foodborne illness prevention thus is a significant concern and a public health priority in the United Arab Emirates,particularly Dubai,because of the extensive tourism industry.The purpose of the study was to evaluate the effectiveness of using demonstrations in training sessions to improve food safety knowledge and practices amongst food handlers.A descriptive and quantitative approach has been applied to collect the quantifiable information related to the research study.This has been further analyzed using the correlation tests to gather the required data.On comparison of the pre-test scores between the intervention and the control group,the t-test analysis showed significant difference in the level of food safety knowledge between the two groups.Pre-test score for the control group was 78.33 and post-test score was 104.66.In the case of the intervention group,pre-test score was 91.37 and post-test score was 130.75.The scores of food handlers’food safety practice for control group:pre-treatment score was 470 and post-treatment score was 646.For intervention group:pre-test score was 723 and post-test score was 1,056.The study concluded that training with demonstration techniques is an effective way of improving compliance with food safety guidelines.It has been understood that training helps in improving the performance of the employees while reducing the foodborne diseases and maintaining hygiene in the food.The study recommends every restaurant needs to provide regular trainings to the employees so that the restaurants can maintain hygiene and food safety practices.展开更多
[Objectives] To investigate the safety of intensive training for stroke recovery. [Methods] A systematic electronic search was conducted up to December 1 st , 2022, and the number of falls and fall-related injuries, a...[Objectives] To investigate the safety of intensive training for stroke recovery. [Methods] A systematic electronic search was conducted up to December 1 st , 2022, and the number of falls and fall-related injuries, as well as other adverse events, were extracted. Odds ratios (ORs) were calculated to assess the two intervention methods, and a 95% confidence interval (95% CI) was calculated for each of them to ensure the statistical accuracy of the results. The heterogeneity of the included studies was also tested. [Results] Five moderate to high quality studies comprising a total of 184 participants were included in this review. All five randomized controlled trials reported adverse events, including falls that did not result in injury, pain in the joints, back, muscle, or chest, and skin injuries such as cuts, bruises, and scrapes. The pooled analysis of these trials showed no statistically significant differences between the intensive training and control groups in terms of falls ( P =0.35) , pain ( P =0.07), or skin injuries ( P =0.90). [Conclusions] This review provides good evidence to suggest that intensive training is safe and feasible as a novel intervention during the stroke recovery.展开更多
This paper aims to develop a novel knowledge management framework for improving the system of pro-safety attitudes among young worker population in Poland. This is done through an efficient use of existing sources of ...This paper aims to develop a novel knowledge management framework for improving the system of pro-safety attitudes among young worker population in Poland. This is done through an efficient use of existing sources of explicit and tacit knowledge in the field of vocational occupational safety and health (OSH) training. This project identifies three specific research steps for the development of the knowledge management framework of the information technology-based approach for improving occupational safety training of young workers, including: (1) the development of the conceptual model of the flow of explicit knowledge of OSH; (2) evaluation of the effectiveness of formal and explicit knowledge sources for OSH and training methods using these sources in the context of attitudes towards health and safety at work; and (3) verification of the proposed model of vocational training with the use of combined explicit and hidden knowledge. The proposed framework includes consideration of the effectiveness of the formal and informal sources of safety knowledge. A mapping from the formal sources of explicit knowledge about the occupational safety to expected attitudes (hidden knowledge) towards OSH outcomes, including emotional, cognitive, and behavioral aspects has been used. The above framework should help to improve the system of vocational training for young workers in Poland.展开更多
The safety production is critical to stable development of Chinese electric power industry. With the development of electric power enterprises, the requirements of its employees are also becoming higher and higher. In...The safety production is critical to stable development of Chinese electric power industry. With the development of electric power enterprises, the requirements of its employees are also becoming higher and higher. In this paper, an optical motion capture system based on the virtual reality technology is proposed to meet the requirements of the power enterprise for the qualified business ability. Electric power equipment, power equipment model entitative operating environment and the human model are established by electric power simulation unit, ZigBee technology and OpenGL graphics library. The problem of missing feature points is solved by applying the human model driven algorithm and the Kalman filtering algorithm. The experimental results show that it is more accurate to use Kalman filtering algorithm to extract the feature point in tracking process of actual motion capture and real-time animation display. The average absolute error of 3D coordinates is 1.61 mm and the average relative error is 2.23%. The system can improve trainees’ sense of experience and immersion.展开更多
Improving the quality of equipment training for the Heavy Equipment Operators(HEO)is a critical task in improving safety and eliminating equipment-related injuries in mining.One of major responsibilities for the HEOs ...Improving the quality of equipment training for the Heavy Equipment Operators(HEO)is a critical task in improving safety and eliminating equipment-related injuries in mining.One of major responsibilities for the HEOs is proper machine inspection.Traditional miner safety training includes the use of hardcopy documents and video instructions.However,modern mobile and computer technology offers tremendous potential to improve the training process.In this study,we apply a 360-degree camera,opensource platform WordPress^(TM),and the software Unity3D in order to create materials and tools for the HEOs safety training to help trainees better understand the pre-shift safety machine inspection.The computer-based safety task training developed in this research is tested and implemented at a surface mine in the southern United States.展开更多
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud...The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.展开更多
Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of win...Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge.Besides,the blunt car body of vehicle has poor aerodynamic characteristics,bringing a greater challenge on the running stability in the crosswind.Design/methodology/approach-In this study,the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test.The dynamic model of the train-long-span steel truss bridge coupling system is established,and the dynamic response as well as the running safety of vehicle are evaluated.Findings-The results show that wind speed has a significant influence on running safety,which is mainly reflected in the over-limitation of wheel unloading rate.The wind speed limit decreases with train speed,and it reduces to 18.83 m/s when the train speed is 160 km/h.Originality/value-This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems.It also provides a new theoretical basis for the safety assessment of express freight trains.展开更多
The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly a...The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.展开更多
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup...Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.展开更多
The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typic...The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.展开更多
In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressi...In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge.展开更多
AIM: To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes.
Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with ...Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method.The variations of degrees of freedom(DOFs:horizontal movement,roll angle,and yaw angle),the lateral wheel-rail force,the derailment coefficient and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specifie speeds.Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed,but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment.The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened.The pressure pulse has significan effects on the train DOFs,and the evaluations of these safety indexes are strongly suggested in practice.The pressure pulse has a limited effect on the derailment coefficien and the lateral wheel-rail force,and,thus,their further evaluations may be not necessary.展开更多
该文作者所在大学与新西兰梅西大学合作开展了食品科学与工程专业国际化培养本科教育项目,全英文课程Food Microbiology and Safety是该项目的核心课程之一。该实验课以应用性为前提,以课程思政为引领,强调食品微生物学与食品安全学的融...该文作者所在大学与新西兰梅西大学合作开展了食品科学与工程专业国际化培养本科教育项目,全英文课程Food Microbiology and Safety是该项目的核心课程之一。该实验课以应用性为前提,以课程思政为引领,强调食品微生物学与食品安全学的融合,中外师资合作开展了系列教学探索与实践。课程设计以食品产品和食品生产为情境,以微生物安全为话题,模拟真实生产场景,丰富内涵和拓展外延;自主设计实验激发主观能动性、自主规划进程锻炼统筹能力、线上资源平台支撑自主学习与评价、随机分组培养团队合作能力。实践表明,课程有效实现了食品微生物学与食品安全学的有机融合,目标驱动型实验教学过程更利于激发学生的主动性,大量综合性和设计性实验提高了课程的两性一度。与同期对照班级相比,该项目所培养学生具有更强的专业素养和实践能力,为食品专业其他实验课程的教学改革提供了参考。展开更多
Endoscopic retrograde cholangiopancreatography training used to be in virtually all district general hospitals, resulting in a large number of trainees with an inadequate case load and achieving poor levels of skill. ...Endoscopic retrograde cholangiopancreatography training used to be in virtually all district general hospitals, resulting in a large number of trainees with an inadequate case load and achieving poor levels of skill. Training is now restricted to a small number of trai nees working in approved units. Continuous audit of outcomes and the appointment of a training lead in the unit are essential. Use of the global rating scale helps clinicians advise hospital administration on the prior it ies for a quality training program.展开更多
Safety training is the exercise normally conducted for all the current and future employees of a company to identify and recognize occupational hazards and diseases as well as determine the appropriate controlling met...Safety training is the exercise normally conducted for all the current and future employees of a company to identify and recognize occupational hazards and diseases as well as determine the appropriate controlling methods.Moreover,virtual reality(VR)is a technology developed to virtually simulate the surrounding envi-ronment to ensure immersive experience and interaction through artificial three-dimensional(3D)platforms.VR devices have been developed to be more compact,easy to use,and affordable to enable people to enjoy immersive virtual experiences and provide interactive and realistic content.This has made technology one of the most popular forms of media for different kinds of training,such as safety-related ones.Therefore,this study aimed to review the use of VR in safety training through the systematic literature review(SLR)method.The process focused on developing 4 primary questions(PQs)classified into 11 systematic research questions(SRQs)for discussion points concerning current developments in VR technology applications.These were further combined with the preferred reporting items for systematic reviews and meta-analyses(PRISMA)flow diagrams in selecting the relevant literature.The questions were also used to investigate the scenarios,methods,objectives,and outcomes of previous studies.The results showed the need for further studies on the application of VR technology in safety training in other fields such as firefighting,chemical industry,maritime,etc.Furthermore,several scenarios such as construction design,disaster response,rescue procedures,and others need to be included.This study also provides information on the gaps for future study,including the exploration of a broader range of industries and VR scenarios.展开更多
Crane operators control mobile or stationary cranes to lift, move and place objects at locations such as building and construction sites, wharves and shi<span>pyards. This activity occurs all over the world and ...Crane operators control mobile or stationary cranes to lift, move and place objects at locations such as building and construction sites, wharves and shi<span>pyards. This activity occurs all over the world and is a high risk task with many</span><span> noted examples of serious incidents and accidents. There are identifiable key causes that have been noted through analysis of the well documented cases </span><span>and many of these causes are preventable through effective training programs</span><span>. Internationally, there are not currently consistent approaches to crane operator training program content or duration. Leading causes of crane accidents are firstly discussed and identified as areas for inclusion in training programs. A number of current training approaches from a range of countries are then </span><span>considered and these are used to outline the basis of a generic competency </span><span>standard for crane operation, as it was found that there are not common standards</span><span> in place. The proposed competency standard can be adapted by training regulators, training providers, government agencies, industry bodies and </span><span>enterprises as a benchmark for the development of effective training pr</span><span>ograms.</span>展开更多
The recent slowdown in the residential and commercial building sectors has resulted in significant unemployment. Given the experience of these construction workers, it may be appropriate for transportation and public ...The recent slowdown in the residential and commercial building sectors has resulted in significant unemployment. Given the experience of these construction workers, it may be appropriate for transportation and public works agencies to assess the potential to retrain these workers for the transportation sector. This widens the pool of available workers, and brings workers with compatible skill sets to the transportation industry. This paper examines the pool of eligible workers, discusses the potential benefits and challenges of bringing these workers into the transportation sector, and identifies programs that have been undertaken to re-train workers for the transportation sector. A program to re-train construction workers from the residential and commercial sector for the transportation sector is presented, including specific training issues to facilitate the successful transition from residential and commercial construction to transportation construction.展开更多
文摘The main objective of the work presented in this paper was to develop a customized safety training program that can be incorporated into the demolition projects undertaken as part of blight reduction efforts in urban centers. A subsidiary objective was to devise and implement a safety program evaluation methodology, and gain insights on the relationships between knowledge acquisition through training and trainee demographics. Salient aspects of blight elimination efforts, as well as the main facets of building demolition practices and requirements, were reviewed. Information on various related safety and health hazards was studied in depth with a focus on demolition operations dealing with blighted properties. A unique safety hazard awareness training program was created for demolition workers, contractors and inspectors based on this research. In addition to devising a curriculum of relevant training topics along with traditional and online delivery systems to be employed, effectiveness evaluation instruments were formulated. Based on the limited data collected from the trainees it was concluded that the program was well-received by them and provided effective learning. It was also found that no statistically significant associations existed between the knowledge gain of the trainees, and either their experience level or union status, after taking this training.
文摘Surgical management of diseases is recognised as a major unmet need in low and middle-income countries(LMICs). Laparoscopic surgery has been present since the 1980 s and offers the benefit of minimising the morbidity and potential mortality associated with laparotomies. Laparotomies are often carried out in LMICs for diagnosis and management, due to lack of radiological investigative and intervention options. The use of laparoscopy for diagnosis and treatment is globally variable, with highincome countries using laparoscopy routinely compared with LMICs. The specific advantages of minimally invasive surgery such as lower surgical site infections and earlier return to work are of great benefit for patients in LMICs, as time lost not working could result in a family not being able to sustain themselves. Laparoscopic surgery and training is not cheap. Cost is a major barrier to healthcare access for a significant population in LMICs. Therefore, cost is usually seen as a major barrier for laparoscopic surgery to be integrated into routine practice in LMICs. The aim of this review is to focus on the practice, training and safety of laparoscopic surgery in LMICs. In addition it highlights the barriers to progress in adopting laparoscopic surgery in LMICs and how to address them.
文摘Food safety,specifically in restaurants,is becoming a key public health priority because of the increased number of meals eaten outside the home.Foodborne illness prevention thus is a significant concern and a public health priority in the United Arab Emirates,particularly Dubai,because of the extensive tourism industry.The purpose of the study was to evaluate the effectiveness of using demonstrations in training sessions to improve food safety knowledge and practices amongst food handlers.A descriptive and quantitative approach has been applied to collect the quantifiable information related to the research study.This has been further analyzed using the correlation tests to gather the required data.On comparison of the pre-test scores between the intervention and the control group,the t-test analysis showed significant difference in the level of food safety knowledge between the two groups.Pre-test score for the control group was 78.33 and post-test score was 104.66.In the case of the intervention group,pre-test score was 91.37 and post-test score was 130.75.The scores of food handlers’food safety practice for control group:pre-treatment score was 470 and post-treatment score was 646.For intervention group:pre-test score was 723 and post-test score was 1,056.The study concluded that training with demonstration techniques is an effective way of improving compliance with food safety guidelines.It has been understood that training helps in improving the performance of the employees while reducing the foodborne diseases and maintaining hygiene in the food.The study recommends every restaurant needs to provide regular trainings to the employees so that the restaurants can maintain hygiene and food safety practices.
文摘[Objectives] To investigate the safety of intensive training for stroke recovery. [Methods] A systematic electronic search was conducted up to December 1 st , 2022, and the number of falls and fall-related injuries, as well as other adverse events, were extracted. Odds ratios (ORs) were calculated to assess the two intervention methods, and a 95% confidence interval (95% CI) was calculated for each of them to ensure the statistical accuracy of the results. The heterogeneity of the included studies was also tested. [Results] Five moderate to high quality studies comprising a total of 184 participants were included in this review. All five randomized controlled trials reported adverse events, including falls that did not result in injury, pain in the joints, back, muscle, or chest, and skin injuries such as cuts, bruises, and scrapes. The pooled analysis of these trials showed no statistically significant differences between the intensive training and control groups in terms of falls ( P =0.35) , pain ( P =0.07), or skin injuries ( P =0.90). [Conclusions] This review provides good evidence to suggest that intensive training is safe and feasible as a novel intervention during the stroke recovery.
文摘This paper aims to develop a novel knowledge management framework for improving the system of pro-safety attitudes among young worker population in Poland. This is done through an efficient use of existing sources of explicit and tacit knowledge in the field of vocational occupational safety and health (OSH) training. This project identifies three specific research steps for the development of the knowledge management framework of the information technology-based approach for improving occupational safety training of young workers, including: (1) the development of the conceptual model of the flow of explicit knowledge of OSH; (2) evaluation of the effectiveness of formal and explicit knowledge sources for OSH and training methods using these sources in the context of attitudes towards health and safety at work; and (3) verification of the proposed model of vocational training with the use of combined explicit and hidden knowledge. The proposed framework includes consideration of the effectiveness of the formal and informal sources of safety knowledge. A mapping from the formal sources of explicit knowledge about the occupational safety to expected attitudes (hidden knowledge) towards OSH outcomes, including emotional, cognitive, and behavioral aspects has been used. The above framework should help to improve the system of vocational training for young workers in Poland.
文摘The safety production is critical to stable development of Chinese electric power industry. With the development of electric power enterprises, the requirements of its employees are also becoming higher and higher. In this paper, an optical motion capture system based on the virtual reality technology is proposed to meet the requirements of the power enterprise for the qualified business ability. Electric power equipment, power equipment model entitative operating environment and the human model are established by electric power simulation unit, ZigBee technology and OpenGL graphics library. The problem of missing feature points is solved by applying the human model driven algorithm and the Kalman filtering algorithm. The experimental results show that it is more accurate to use Kalman filtering algorithm to extract the feature point in tracking process of actual motion capture and real-time animation display. The average absolute error of 3D coordinates is 1.61 mm and the average relative error is 2.23%. The system can improve trainees’ sense of experience and immersion.
文摘Improving the quality of equipment training for the Heavy Equipment Operators(HEO)is a critical task in improving safety and eliminating equipment-related injuries in mining.One of major responsibilities for the HEOs is proper machine inspection.Traditional miner safety training includes the use of hardcopy documents and video instructions.However,modern mobile and computer technology offers tremendous potential to improve the training process.In this study,we apply a 360-degree camera,opensource platform WordPress^(TM),and the software Unity3D in order to create materials and tools for the HEOs safety training to help trainees better understand the pre-shift safety machine inspection.The computer-based safety task training developed in this research is tested and implemented at a surface mine in the southern United States.
基金supported by the National Key R&D Program“Transportation Infrastructure”“Reveal The List and Take Command”project(2022YFB2603301)National Natural Science Foundation of China(No.52078498)+3 种基金Natural Science Foundation of Hunan Province of China(No.2022JJ30745)Frontier cross research project of Central South University(No.2023QYJC006)Hunan Provincial Science and Technology Promotion Talent Project(No.2020TJ-Q19)Science and Technology Research and Development Program Project of China railway group limited(Major Special Project,No.2021-Special-04-2)。
文摘The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk.
基金supported by the Research Major Project of China Academy of Railway Sciences Group Co.,Ltd(Grant No.2021YJ270)the China National Railway Group Science and Technology Program(Grant No.N2022T001).
文摘Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge.Besides,the blunt car body of vehicle has poor aerodynamic characteristics,bringing a greater challenge on the running stability in the crosswind.Design/methodology/approach-In this study,the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test.The dynamic model of the train-long-span steel truss bridge coupling system is established,and the dynamic response as well as the running safety of vehicle are evaluated.Findings-The results show that wind speed has a significant influence on running safety,which is mainly reflected in the over-limitation of wheel unloading rate.The wind speed limit decreases with train speed,and it reduces to 18.83 m/s when the train speed is 160 km/h.Originality/value-This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems.It also provides a new theoretical basis for the safety assessment of express freight trains.
基金Project(51975591)supported by the National Natural Science Foundation of ChinaProject(P2018J003)supported by the Technology Research and Development Program of China Railway。
文摘The transient pressures induced by trains passing through a tunnel and their impact on the structural safety of the tunnel lining were numerically analyzed.The results show that the pressure change increases rapidly along the tunnel length,and the maximum value is observed at around 200 m from the entrance,while the maximum pressure amplitude is detected at 250 m from the entrance when two trains meeting in a double-track tunnel.The maximum peak pressure on the tunnel induced by a train passing through a 70 m^(2) single-track tunnel,100 m^(2) double-track tunnel and two trains meeting in the 100 m^(2) double-track tunnel at 350 km/h,are−4544 Pa,−3137 Pa and−5909 Pa,respectively.The aerodynamic pressure induced axial forces acting on the tunnel lining are only 8%,5%and 9%,respectively,of those generated by the earth pressure.It seems that the aerodynamic loads exert little underlying influence on the static strength safety of the tunnel lining providing that the existing cracks and defects are not considered.
基金Project(51378050) supported by the National Natural Science Foundation of ChinaProject(B13002) supported by the “111” Project,China+2 种基金Project (8192035) supported by the Beijing Municipal Natural Science Foundation,ChinaProject(P2019G002) supported by the Science and Technology Research and Development Program of China RailwayProject(2019YJ193) supported by the State Key Laboratory for Track Technology of High-speed Railway,China。
文摘Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.
基金supported by the National Natural Science Foundation of China(Grant No.51705267)China Postdoctoral Science Foundation Grant(Grant No.2018M630750)+1 种基金National Natural Science Foundation of China(Grant No.51605397)Natural Science Foundation of Shandong Province,China(Grant No.ZR2014EEP002).
文摘The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years.In the present paper,the effect of the strong gust wind on a high-speed train is investigated.A typical gust wind model for any wind angle,named“Chinese hat gust wind model”,was first constructed,and an algorithm for computing the aerodynamic loads was elaborated accordingly.A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics.The assessment of the operational safety has been conducted by means of characteristic wind curves(CWC).As some of the parameters of the wind-train system were difficult to measure,we also investigated the impact of the uncertain system parameters on the CWC.Results indicate that,the descending order of the operational safety index of the vehicle for each wind angle is 90°-60°-120°-30°-150°,and the worst condition for the operational safety occurs when the wind angle reaches around 90°.According to our findings,the gust factor and aerodynamic side force coefficient have great impact on the critical wind speed.Thus,these two parameters require special attention when considering the operational safety of a railway vehicle subjected to strong gust wind.
基金Project(20ZR1460700) supported by the Natural Science Foundation of Shanghai,ChinaProject supported by Shanghai Collaborative Innovation Research Center for Multi-network&Multi-modal Rail Transit,China。
文摘In order to study the safety and the comfort of high-speed trains running on a single-tower cable-stayed bridge under spatial gust,a dynamic model of wind-train-bridge analysis model is built based on the autoregressive method,the multi-body dynamics method and the finite element method.On this basis,the influence of spatial gust model loading,the suspension parameters change,wind attack angle and speed on the train-bridge system are analyzed by combining the time/frequency domain analysis and statistical methods.The results show that the spatial gust environment is one of the most important factors affecting safety and comfort and can make the calculation result tend to be conservative and more conducive.The response changes caused by K_(py),K_(px) and K_(sx) changes are nearly linear,while Ksy shows nonlinear characteristics and the most sensitivity.Wind attack angle at 75°and 90°has the greatest influence on the vehicle-bridge system.For ride comfort index,when pre-set wind speed(α=75°)reaches 20 m/s,the vertical acceleration firstly exceeds the limit value;when wind speed(α=90°)reaches 21.5 m/s,the lateral acceleration firstly exceeds the limit value,and the ride comfort of the vehicle cannot be guaranteed.For running safety index,when pre-set wind speed(α=75°)reaches 24.6 m/s,the wheel unloading coefficient firstly exceeds the limit;when pre-set wind speed(α=90°)reaches 24.5 m/s,the derailment coefficient firstly exceeds the limit,and the running safety cannot be guaranteed.The results can provide a suitable reference for the safe and stable operation of trains on the bridge.
基金Supported by NHS Bowel Cancer Screening ProgrammeDrs.Matharoo and Sevdalis are affiliated with the Imperial Centre for Patient Safety and Service Quality(www.cpssq.org),affiliated with the Imperial Patient Safety Translational Research Centre,which is funded by the National Institute for Health Research
文摘AIM: To investigate whether novel, non-technical skills training for Bowel Cancer Screening (BCS) endoscopy teams enhanced patient safety knowledge and attitudes.
基金the National Basic Research Program of China (973 program,Grant 2011CB711100)the National Natural Science Foundation of China (Project No.11372307)the Chinese Academy of Sciences (Grant KJCX2-EW-L03)
文摘Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method.The variations of degrees of freedom(DOFs:horizontal movement,roll angle,and yaw angle),the lateral wheel-rail force,the derailment coefficient and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specifie speeds.Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed,but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment.The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened.The pressure pulse has significan effects on the train DOFs,and the evaluations of these safety indexes are strongly suggested in practice.The pressure pulse has a limited effect on the derailment coefficien and the lateral wheel-rail force,and,thus,their further evaluations may be not necessary.
文摘该文作者所在大学与新西兰梅西大学合作开展了食品科学与工程专业国际化培养本科教育项目,全英文课程Food Microbiology and Safety是该项目的核心课程之一。该实验课以应用性为前提,以课程思政为引领,强调食品微生物学与食品安全学的融合,中外师资合作开展了系列教学探索与实践。课程设计以食品产品和食品生产为情境,以微生物安全为话题,模拟真实生产场景,丰富内涵和拓展外延;自主设计实验激发主观能动性、自主规划进程锻炼统筹能力、线上资源平台支撑自主学习与评价、随机分组培养团队合作能力。实践表明,课程有效实现了食品微生物学与食品安全学的有机融合,目标驱动型实验教学过程更利于激发学生的主动性,大量综合性和设计性实验提高了课程的两性一度。与同期对照班级相比,该项目所培养学生具有更强的专业素养和实践能力,为食品专业其他实验课程的教学改革提供了参考。
文摘Endoscopic retrograde cholangiopancreatography training used to be in virtually all district general hospitals, resulting in a large number of trainees with an inadequate case load and achieving poor levels of skill. Training is now restricted to a small number of trai nees working in approved units. Continuous audit of outcomes and the appointment of a training lead in the unit are essential. Use of the global rating scale helps clinicians advise hospital administration on the prior it ies for a quality training program.
文摘Safety training is the exercise normally conducted for all the current and future employees of a company to identify and recognize occupational hazards and diseases as well as determine the appropriate controlling methods.Moreover,virtual reality(VR)is a technology developed to virtually simulate the surrounding envi-ronment to ensure immersive experience and interaction through artificial three-dimensional(3D)platforms.VR devices have been developed to be more compact,easy to use,and affordable to enable people to enjoy immersive virtual experiences and provide interactive and realistic content.This has made technology one of the most popular forms of media for different kinds of training,such as safety-related ones.Therefore,this study aimed to review the use of VR in safety training through the systematic literature review(SLR)method.The process focused on developing 4 primary questions(PQs)classified into 11 systematic research questions(SRQs)for discussion points concerning current developments in VR technology applications.These were further combined with the preferred reporting items for systematic reviews and meta-analyses(PRISMA)flow diagrams in selecting the relevant literature.The questions were also used to investigate the scenarios,methods,objectives,and outcomes of previous studies.The results showed the need for further studies on the application of VR technology in safety training in other fields such as firefighting,chemical industry,maritime,etc.Furthermore,several scenarios such as construction design,disaster response,rescue procedures,and others need to be included.This study also provides information on the gaps for future study,including the exploration of a broader range of industries and VR scenarios.
文摘Crane operators control mobile or stationary cranes to lift, move and place objects at locations such as building and construction sites, wharves and shi<span>pyards. This activity occurs all over the world and is a high risk task with many</span><span> noted examples of serious incidents and accidents. There are identifiable key causes that have been noted through analysis of the well documented cases </span><span>and many of these causes are preventable through effective training programs</span><span>. Internationally, there are not currently consistent approaches to crane operator training program content or duration. Leading causes of crane accidents are firstly discussed and identified as areas for inclusion in training programs. A number of current training approaches from a range of countries are then </span><span>considered and these are used to outline the basis of a generic competency </span><span>standard for crane operation, as it was found that there are not common standards</span><span> in place. The proposed competency standard can be adapted by training regulators, training providers, government agencies, industry bodies and </span><span>enterprises as a benchmark for the development of effective training pr</span><span>ograms.</span>
文摘The recent slowdown in the residential and commercial building sectors has resulted in significant unemployment. Given the experience of these construction workers, it may be appropriate for transportation and public works agencies to assess the potential to retrain these workers for the transportation sector. This widens the pool of available workers, and brings workers with compatible skill sets to the transportation industry. This paper examines the pool of eligible workers, discusses the potential benefits and challenges of bringing these workers into the transportation sector, and identifies programs that have been undertaken to re-train workers for the transportation sector. A program to re-train construction workers from the residential and commercial sector for the transportation sector is presented, including specific training issues to facilitate the successful transition from residential and commercial construction to transportation construction.