期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Soil characteristics and plant distribution in saline wetlands of Oued Righ, northeastern Algeria 被引量:4
1
作者 Naima KOULL Abdelmadjid CHEHMA 《Journal of Arid Land》 SCIE CSCD 2016年第6期948-959,共12页
Saline wetlands are rare ecosystems in Saharan areas, which are important for conservation of many endemic and rare plant species. In this study, we investigated five saline wetland sites of the Oued Righ region, loca... Saline wetlands are rare ecosystems in Saharan areas, which are important for conservation of many endemic and rare plant species. In this study, we investigated five saline wetland sites of the Oued Righ region, located in the northeastern Algeria, to determine the environmental factors controlling the composition and distribution of plant communities. We established a total of 20 transects to measure the vegetation parameters (density and cover) and soil characteristics (electrical conductivity, moisture, pH, CaSO4, CaCO3, organic matter, Na+, K+, Mg2+, Ca2+, SO42 , CI-, NO3- and HCO3-). A total of 17 plant species belonging to seven families were identified. The natural vegetation was composed of halophytic and hydro-halophytic plant communities, presented specially by the species of Amaranthaceae family. Soils in the studied wetlands were moist, gypsiferous, alkaline, salty to very salty with dominance of chloride and calcium. Results of the Canonical Correspondence Analysis (CCA) showed that community structure and species distribution patterns of vegetation were mainly dependent on soil characteristics, mainly being soil salinity (CaSO4, K+, Ca2+ and CI-) and moisture. The distribution of plant species was found to follow a specific zonal pattern. Halocnemum strobilaceum was observed to grow in highly salt-affected soils, thus being the more salt-tolerant species. Phragmites communis plants were widely distributed in the study area with a high density at the edges of accumulated water body. Juncus maritimus, Tamarix gallica and Saficornia fructicosa grew in soils that are partially or completely flooded in winter. Suaeda fructicosa, Traganum nudatum, Arthrocnemum glaucum, Aeluropus littoralis, Cressa cretica and Cynodon dactylon were distributed in salty and moist soils away from the open water body. Plants of Zygophyllum album, Limonastrirum guyonianum, Cornulaca monacantha, Cistanche tinctoria, Mollugo nudicaulis and Sonchus maritimus were found in soils with less salty and moisture. They constituted the outermost belt of vegetation in the studied wetlands. This study will provide a reference on introducing the salt-tolerant plant species as a fodder resource in saline habitats and regenerating the degraded saline wetlands. 展开更多
关键词 saline wetlands soil properties vegetation composition SAHARA Algeria
下载PDF
Characterization of saline soil for the halophytes of largest inland saline wetland of India using geospatial technology
2
作者 Naik RAJASHREE Sharma LAXMI KANT Singh AVINASH 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1277-1291,共15页
About 23%of the surface area and 44%of the volume of all the lakes are occupied by saline lakes in the world.Importantly,agricultural diversion,illegal encroachment,pollution,and invasive species could cause these lak... About 23%of the surface area and 44%of the volume of all the lakes are occupied by saline lakes in the world.Importantly,agricultural diversion,illegal encroachment,pollution,and invasive species could cause these lakes to dry up completely or partially by 2025.Illegal saltpan encroachment is causing Sambhar,India’s largest saline lake,to shrink by 4.23%every decade.This study aims to characterize the soil parameters where halophytes are growing.A literature survey was conducted for halophytes and soil characteristics.The study area was divided into four zones for stratified random sampling.Soil sampling was conducted in February 2021.The soil indicators for halophyte selected were pH,electrical conductivity,moisture,salinity,organic carbon,and organic matter.The obtained results were interpolated in the geospatial platform for soil characteristic mapping.It is found that no research is conducted on halophytes of the lake.Studies on soil are also inconsistent and only six common parameters could be identified.Results show that the pH ranged 9.37-7.66,electrical conductivity was 16.1-0.38,moisture 23.37%-1.2%,organic carbon 3.29%-0.15%,organic matter 5.6%-0.2%,and salinity 8.86%-0.72%.Though these results show improved condition as compared to last few years,in long term,the lake is desiccating.During the UN Decade of Ecosystem Restoration(2021-2030),if these causes are not addressed,the ecosystem may completely dry up. 展开更多
关键词 HALOPHYTES inland lakes saline wetlands soil geospatial mapping interpolation
下载PDF
Phytosynthetic bacteria (PSB) as a water quality improvement mechanism in saline-alkali wetland ponds 被引量:11
3
作者 LiuFJ HuWY 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第3期339-344,共6页
The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective ... The efficiency of phytosynthetic bacteria (PSB) to improve the water quality in saline alkali ponds was studied, the result showed that (1) PSB application could increase the content of DO, NO\+-\-3\|N and effective phosphorus (EP) in ponds; (2) the changes of COD were not evident, just effective in later period after PSB application; (3) PSB application could decrease the contents of NH\+-\-4\|N (NH\-3\|N), NO\+-\-2\|N ; (4) PSB application could improve the structure of the effective nitrogen (EN) and EP, stimulate the growth of phytoplankton, and increase primary productivity, and finally increase the commercial profits of ponds because of the increase of EP and the decrease of EN contents; (5) the effect exerting speed of PSB was slower, but the effect sustaining time was longer; (6) the appropriate concentration of PSB application in saline alkali wetland ponds was 10×10 -6 mg/L, one time effective period was more than 15 days. So PSB was an efficient water quality improver in saline alkali ponds. 展开更多
关键词 phytosynthetic bacteria (PSB) saline alkali wetland fishpond water quality improving
下载PDF
Land use effects on soil organic carbon, nitrogen and salinity in saline-alkaline wetland 被引量:6
4
作者 WenJie Liu YongZhong Su Rong Yang XueFengWang XiaoYang 《Research in Cold and Arid Regions》 2010年第3期263-270,共8页
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fr... Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area. 展开更多
关键词 labile fraction carbon easily oxidized carbon microbial biomass carbon salinity nitrate-nitrogen saline-alkaline wetland
下载PDF
Effects of Environmental Conditions and Aboveground Biomass on CO2 Budget in Phragmites australis Wetland of Jiaozhou Bay,China 被引量:2
5
作者 GAO Manyu KONG Fanlong +2 位作者 XI Min LI Yue LI Jihua 《Chinese Geographical Science》 SCIE CSCD 2017年第4期539-551,共13页
Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas... Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem. 展开更多
关键词 net ecosystem CO_2 exchange ecosystem respiration gross primary production influencing factor estuarial saline reed wetland static chamber-GC method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部