期刊文献+
共找到6,745篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of salinization on soil properties and mechanisms beneficial to microorganisms in salinized soil remediation-a review
1
作者 Jing Pan Xian Xue +6 位作者 CuiHua Huang QuanGang You PingLin Guo RuiQi Yang FuWen Da ZhenWei Duan Fei Peng 《Research in Cold and Arid Regions》 CSCD 2024年第3期121-128,共8页
Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead... Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil. 展开更多
关键词 salinized soil Microbial remediation Halophilic and halotolerant microorganisms soil properties
下载PDF
Climate and topography regulate the spatial pattern of soil salinization and its effects on shrub community structure in Northwest China
2
作者 DU Lan TIAN Shengchuan +5 位作者 ZHAO Nan ZHANG Bin MU Xiaohan TANG Lisong ZHENG Xinjun LI Yan 《Journal of Arid Land》 SCIE CSCD 2024年第7期925-942,共18页
Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub... Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species. 展开更多
关键词 soil salinization HALOPHYTES SHRUBLAND climate change BIODIVERSITY DRYLANDS Northwest China
下载PDF
Experimental investigation into the salinity effect on the physicomechanical properties of carbonate saline soil
3
作者 Jiejie Shen Qing Wang +3 位作者 Yating Chen Xuefei Zhang Yan Han Yaowu Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1883-1895,共13页
For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This stu... For engineering structures with saline soil as a filling material,such as channel slope,road subgrade,etc.,the rich soluble salt in the soil is an important potential factor affecting their safety performance.This study examines the Atterberg limits,shear strength,and compressibility of carbonate saline soil samples with different NaHCO3 contents in Northeast China.The mechanism underlying the influence of salt content on soil macroscopic properties was investigated based on a volumetric flask test,a mercury intrusion porosimetry(MIP)test,and a scanning electron microscopic(SEM)test.The results demonstrated that when NaHCO3 contents were lower than the threshold value of 1.5%,the bound water film adsorbed on the surface of clay particles thickened continuously,and correspondingly,the Atterberg limits and plasticity index increased rapidly as the increase of sodium ion content.Meanwhile,the bonding force between particles was weakened,the dispersion of large aggregates was enhanced,and the soil structure became looser.Macroscopically,the compressibility increased and the shear strength(mainly cohesion)decreased by 28.64%.However,when the NaHCO3 content exceeded the threshold value of 1.5%,the salt gradually approached solubility and filled the pores between particles in the form of crystals,resulting in a decrease in soil porosity.The cementation effect generated by salt crystals increased the bonding force between soil particles,leading to a decrease in plasticity index and an improvement in soil mechanical properties.Moreover,this work provides valuable suggestions and theoretical guidance for the scientific utilization of carbonate saline soil in backfill engineering projects. 展开更多
关键词 Carbonate saline soil Salt content Physicomechanical properties Bound water MICROSTRUCTURE
下载PDF
The effect of seismic action on stability of saline soil subgrade in cold region based on isothermal stratification method
4
作者 Jie Cheng Yu Zhang +2 位作者 Ying Ma Xuerui Chen Ning An 《Earthquake Research Advances》 CSCD 2024年第3期66-81,共16页
With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the in... With the change of seasons, the shear strength of saline soil subgrade filler will change with the change of external temperature, which will aggravate the adverse effects of seismic on the subgrade. To explore the influence of seismic action on the stability of saline soil subgrade under the influence of temperature on the strength of saline soil subgrade filler, this paper first carried out saline soil shear tests at different temperatures to obtain the influence of temperature on the shear strength of saline soil. Then, the temperature field of the saline soil subgrade was simulated, and then based on the subgrade isothermal stratification model and FLAC3D, the displacement and acceleration amplification effects of seismic action on the shady slope, sunny slope and subgrade of saline soil subgrade in different months were analyzed. The following conclusions were finally drawn: under the action of seismic, In the process of the change of subgrade temperature of Qarhan-Golmud Expressway between 7.7°C and 27°C, the change of saline soil cohesion is the main factor affecting the stability of subgrade slope, and the maximum and minimum values of subgrade surface settlement appear in September and June of each year,respectively. In August, the differences of settlement between the shady slope and the sunny slope shoulder of the subgrade were the largest, and the acceleration of the shady slope and the sunny slope and the inside of the subgrade changed most significantly in the vertical direction. Special attention should be paid to the seismic early warning in the above key months;In the range from both sides of the shoulder to the centerline of the roadbed,the acceleration amplification effect starts to increase significantly from about 3m from the centerline of the roadbed to the centerline, so it is necessary to pay attention to the seismic design of this range. 展开更多
关键词 Subgrade stability saline soils Acceleration amplification effect Seismic design
下载PDF
Effect of Saline Water on Soil Acidity, Alkalinity and Nutrients Leaching in Sandy Loamy Soil in Rwamagana Bella Flower Farm, Rwanda
5
作者 Abel Mwubahaman Wali Umaru Garba +3 位作者 Hussein Bizimana Jean de Dieu Bazimenyera Eric Derrick Bugenimana Jean Nepomuscene Nsengiyumva 《Agricultural Sciences》 2024年第1期15-35,共21页
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration... The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels. 展开更多
关键词 NUTRIENTS LEACHING saline Water soil Acidity soil Alkalinity
下载PDF
Thermal-water-salt coupling process of unsaturated saline soil under unidirectional freezing 被引量:3
6
作者 LUO Chong-liang YU Yun-yan +3 位作者 ZHANG Jing TAO Jing-yan OU Qing-jie CUI Wen-hao 《Journal of Mountain Science》 SCIE CSCD 2023年第2期557-569,共13页
Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation... Salinization and desertification are closely related to water-salt migration caused by a temperature gradient.Based on the Darcy Law of unsaturated soils,the law of energy conservation and the law of mass conservation,the thermal-water-salt coupling mathematical model of unsaturated frozen saline soil was established.The model considered the latent heat of phase change,crystallization impedance,crystallization consumption and complete precipitation of solute crystallization in ice.In order to verify the rationality of the model,the unidirectional freezing test of unsaturated saline soil was carried out in an open system with no-pressure water supplement to obtain the spatial distribution of temperature,moisture and salt in the saline soil.Finally,numerical simulations are implemented with the assistance of COMSOL Multiphysics.Validation of the model is illustrated by comparisons between the simulation and experimental data.The results demonstrated that the temperature within saline soil changes with time and can be divided into three stages,namely quick freezing stage,transitional stage and stable stage.The water and salt contents in the freezing zone are layered,with peak values at the freezing front.The coupled model could reveal the heat-mass migration mechanism of unsaturated frozen saline soil and dynamically describe the freezing depth and the movement law of the freezing front,ice and salt crystal formation mechanism,and the change law of thermal conductivity and permeability coefficient. 展开更多
关键词 Unsaturated sulfate saline soil Watersalt migration Crystallization latent heat Crystallization impedance Mathematical model
下载PDF
Maize straw application as an interlayer improves organic carbon and total nitrogen concentrations in the soil profile: A four-year experiment in a saline soil 被引量:1
7
作者 CHANG Fang-di WANG Xi-quan +7 位作者 SONG Jia-shen ZHANG Hong-yuan YU Ru WANG Jing LIU Jian WANG Shang JI Hong-jie LI Yu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1870-1882,共13页
Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,t... Soil salinization is a critical environmental issue restricting agricultural production.Deep return of straw to the soil as an interlayer (at 40 cm depth) has been a popular practice to alleviate salt stress.However,the legacy effects of straw added as an interlayer at different rates on soil organic carbon (SOC) and total nitrogen (TN) in saline soils still remain inconclusive.Therefore,a four-year (2015–2018) field experiment was conducted with four levels (i.e.,0,6,12and 18 Mg ha~(–1)) of straw returned as an interlayer.Compared with no straw interlayer (CK),straw addition increased SOC concentration by 14–32 and 11–57%in the 20–40 and 40–60 cm soil layers,respectively.The increases in soil TN concentration (8–22 and 6–34%in the 20–40 and 40–60 cm soil layers,respectively) were lower than that for SOC concentration,which led to increased soil C:N ratio in the 20–60 cm soil depth.Increases in SOC and TN concentrations in the 20–60 cm soil layer with straw addition led to a decrease in stratification ratios (0–20 cm:20–60 cm),which promoted uniform distributions of SOC and TN in the soil profile.Increases in SOC and TN concentrations were associated with soil salinity and moisture regulation and improved sunflower yield.Generally,compared with other treatments,the application of 12 Mg ha~(–1) straw had higher SOC,TN and C:N ratio,and lower soil stratification ratio in the2015–2017 period.The results highlighted that legacy effects of straw application as an interlayer were maintained for at least four years,and demonstrated that deep soil straw application had a great potential for improving subsoil fertility in salt-affected soils. 展开更多
关键词 straw addition INTERLAYER soil organic carbon soil nitrogen C:N ratio saline soil
下载PDF
Buried straw layer and plastic mulching increase microflora diversity in salinized soil 被引量:10
8
作者 LI Yu-yi PANG Huan-cheng +5 位作者 HAN Xiu-fang YAN Shou-wei ZHAO Yong-gan WANG Jing ZHAI Zhen ZHANG Jian-li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第7期1602-1611,共10页
Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plas... Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P〈0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P〈0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils. 展开更多
关键词 buried straw layer plastic mulch soil microlfora changes PCR-DGGE microlfora diversity salinized soil
下载PDF
Derivation of salt content in salinized soil from hyperspectral reflectance data: A case study at Minqin Oasis, Northwest China 被引量:3
9
作者 QIAN Tana Atsushi TSUNEKAWA +3 位作者 PENG Fei Tsugiyuki MASUNAGA WANG Tao LI Rui 《Journal of Arid Land》 SCIE CSCD 2019年第1期111-122,共12页
Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced tech... Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity. 展开更多
关键词 salinITY index soil salt content spectral reflectance waveband PAIRS ARID regions
下载PDF
Characterization of saline soil for the halophytes of largest inland saline wetland of India using geospatial technology
10
作者 Naik RAJASHREE Sharma LAXMI KANT Singh AVINASH 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1277-1291,共15页
About 23%of the surface area and 44%of the volume of all the lakes are occupied by saline lakes in the world.Importantly,agricultural diversion,illegal encroachment,pollution,and invasive species could cause these lak... About 23%of the surface area and 44%of the volume of all the lakes are occupied by saline lakes in the world.Importantly,agricultural diversion,illegal encroachment,pollution,and invasive species could cause these lakes to dry up completely or partially by 2025.Illegal saltpan encroachment is causing Sambhar,India’s largest saline lake,to shrink by 4.23%every decade.This study aims to characterize the soil parameters where halophytes are growing.A literature survey was conducted for halophytes and soil characteristics.The study area was divided into four zones for stratified random sampling.Soil sampling was conducted in February 2021.The soil indicators for halophyte selected were pH,electrical conductivity,moisture,salinity,organic carbon,and organic matter.The obtained results were interpolated in the geospatial platform for soil characteristic mapping.It is found that no research is conducted on halophytes of the lake.Studies on soil are also inconsistent and only six common parameters could be identified.Results show that the pH ranged 9.37-7.66,electrical conductivity was 16.1-0.38,moisture 23.37%-1.2%,organic carbon 3.29%-0.15%,organic matter 5.6%-0.2%,and salinity 8.86%-0.72%.Though these results show improved condition as compared to last few years,in long term,the lake is desiccating.During the UN Decade of Ecosystem Restoration(2021-2030),if these causes are not addressed,the ecosystem may completely dry up. 展开更多
关键词 HALOPHYTES inland lakes saline wetlands soil geospatial mapping interpolation
下载PDF
Accelerated Deterioration Mechanism and Reliability Evaluation of Concrete in Saline Soil Area
11
作者 付勇 乔宏霞 +2 位作者 HAKUZWEYEZU Theogene QIAO Guobin GUO Fei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期582-590,共9页
To reveal the deterioration mechanism and service life of concrete durability in the western saline soil area,the indoor accelerated test of the concrete specimen was simulated in the coupled environment of salt erosi... To reveal the deterioration mechanism and service life of concrete durability in the western saline soil area,the indoor accelerated test of the concrete specimen was simulated in the coupled environment of salt erosion and dry-wet cycles in the west saline soil area of China.The deterioration mechanism of concrete durability was revealed through the relative dynamic elastic modulus,relative quality evaluation parameters,SEM,and XRD evaluation indexes.Random Wiener distribution function was used for modeling life prediction.The results show that the relative dynamic elastic modulus evaluation parameter as an evaluation index of concrete durability under various environmental coupling effects is more reliable than the relative quality,there were holes and cracks in the concrete,and needle-like and layered crystals grow from the internal cracks.The corrosion products include ettringite,gypsum and other expansive crystals and non-gelling Mg(OH)_(2);the expansion stress caused by physical,chemical reaction,and temperature change under the action of drywet cycle aggravates the formation and development of cracks.The random Wiener distribution function can describe the degradation process of concrete specimen durability,and the established concrete reliability function can intuitively reflect the service life of concrete specimens. 展开更多
关键词 CONCRETE saline soil area service prediction random wiener DURABILITY deterioration mechanism
下载PDF
Approach of water-salt regulation using micro-sprinkler irrigation in two coastal saline soils
12
作者 Lin-lin Chu Yu Zhu +4 位作者 Ling Xiong Rong-yu Huang Yao-hu Kang: Zhan-peng Liu Xiao-ming Geng 《Water Science and Engineering》 EI CAS CSCD 2023年第1期106-112,共7页
This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkl... This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth.Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region.The application of the three stages of soil wateresalt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils.There were increases in the plant height,leaf width,leaf length,and tiller numbers of tall fescue throughout the leaching process.The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil.This approach achieved better effects in sandy loam soil than in silt soil.Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process,whereas plant growth was higher in silt soil because of effective water conservation.In sandy loam,soil moisture should be maintained during soil reclamation,and in silt soil,soil root-zone environments optimal for the emergence of plants should be quickly established.Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil wateresalt regulation regime. 展开更多
关键词 Coastal saline soils Micro-sprinkler irrigation Salt leaching Tall fescue Wateresalt regulation
下载PDF
Evaluation of Corrosion Degradation Law of Recycled Reinforced Concrete in Saline Soil Under Electrified Environment
13
作者 李琼 乔宏霞 LI Aoyang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期632-644,共13页
In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to ... In order to investigate the corrosion mechanism of recycled reinforced concrete (RRC) under harsh environments,four recycled coarse aggregate (RCA) contents were selected,and saline soil was used as an electrolyte to perform electrified accelerated corrosion experiments.The relative dynamic elastic modulus and relative corrosion current density were considered to describe the deterioration law of the RRC in saline soil.The results indicated that as the energization time increased,the corrosion current density,corrosion potential,and polarization resistance of the steel bar decreased gradually.Compared with ordinary reinforced concrete,when the RCA content was 30%,the ability of the RRC to resist corrosion was improved slightly;however,when the RCA content exceeded 30%,the corrosion resistance of the RRC deteriorated rapidly.Scanning electron microscopy revealed that for a dense RRC,less corrosion products were generated in the pores inside the concrete and on the surface of the steel bar.X-ray diffraction results indicated that SO_(4)^(2-) can generate ettringite and other corrosion products,along with volume expansion.The main corrosion products generated on the surface of the steel bars included Fe_(2)O_(3),Fe_(3)O_(4) and FeO(OH),which were the corrosion products generated by steel bars under natural environments.Therefore,using saline soil as an electrolyte is more consistent with the actual service environments of RRC.Both the relative dynamic mode and relative corrosion current density of the degradation parameters conform to the Weibull distribution;furthermore,the relative dynamic mode is more sensitive and the corresponding reliability curve can better describe the degradation law of RRC under saline soil environments. 展开更多
关键词 recycled aggregate concrete corrosion mechanism saline soil accelerated corrosion durability evaluation parameters
下载PDF
Effects of Groundwater with Various Salinities on Evaporation and Redistribution of Water and Salt in Saline-sodic Soils in Songnen Plain,Northeast China
14
作者 ZHU Wendong ZHAO Dandan +6 位作者 YANG Fan WANG Zhichun DONG Shide AN Fenghua MA Hongyuan ZHANG Lu TIBOR Tóth 《Chinese Geographical Science》 SCIE CSCD 2023年第6期1141-1152,共12页
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and... Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions. 展开更多
关键词 groundwater evaporation sodium adsorption ratio total salt content ion composition soil salinization water and salt dynamics Songnen Plain China
下载PDF
Leaching Fraction (LF) of Irrigation Water for Saline Soils Using Machine Learning
15
作者 Rab Nawaz Bashir Imran Sarwar Bajwa +4 位作者 Muhammad Waseem Iqbal Muhammad Usman Ashraf Ahmed Mohammed Alghamdi Adel ABahaddad Khalid Ali Almarhabi 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1915-1930,共16页
Soil salinity is a serious land degradation issue in agriculture.It is a major threat to agriculture productivity.Extra irrigation water is applied to leach down the salts from the root zone of the plants in the form ... Soil salinity is a serious land degradation issue in agriculture.It is a major threat to agriculture productivity.Extra irrigation water is applied to leach down the salts from the root zone of the plants in the form of a Leaching fraction(LF)of irrigation water.For the leaching process to be effective,the LF of irriga-tion water needs to be adjusted according to the environmental conditions and soil salinity level in the form of Evapotranspiration(ET)rate.The relationship between environmental conditions and ET rate is hard to be defined by a linear relationship and data-driven Machine learning(ML)based decisions are required to determine the calibrated Evapotranspiration(ETc)rate.ML-assisted ETc is pro-posed to adjust the LF according to the ETc and soil salinity level.A regression model is proposed to determine the ETc rate according to the prevailing tempera-ture,humidity,and sunshine,which would be used to determine the smart LF according to the ETc and soil salinity level.The proposed model is trained and tested against the Blaney Criddle method of Reference evapotranspiration(ETo)determination.The validation of the model from the test dataset reveals the accu-racy of the ML model in terms of Root mean squared errors(RMSE)are 0.41,Mean absolute errors(MAE)are 0.34,and Mean squared errors(MSE)are 0.28 mm day-1.The applications of the proposed solution in a real-time environ-ment show that the LF by the proposed solution is more effective in reducing the soil salinity as compared to the traditional process of leaching. 展开更多
关键词 Leaching fraction saline soil EVAPOTRANSPIRATION machine learning calibrated evapotranspiration artificial intelligence blaney criddle method
下载PDF
Reclamation of Coastal Soil Salinity towards Sustainable Rice Production and Mitigating Global Warming Potentials in the Changing Climate
16
作者 Muhammad Aslam Ali Md. Ashraful Islam Khan +3 位作者 Md. Abdul Baten Hafsa Jahan Hiya Murad Ahmed Farukh Shuvo Kumar Sarkar 《American Journal of Climate Change》 2023年第1期100-115,共16页
Soil salinity has become a major constraint to rice productivity in the coastal region of Bangladesh, which threatened food security. Therefore, field experiment was conducted at salt stressed Shyamnagor Upazilla of S... Soil salinity has become a major constraint to rice productivity in the coastal region of Bangladesh, which threatened food security. Therefore, field experiment was conducted at salt stressed Shyamnagor Upazilla of Satkhira district to improve the soil salinity status, sustainable rice production and suppression of global warming potentials. Selected soil amendments viz. trichocompost, tea waste compost, azolla compost and phospho-gypsum (PG) were applied in the field plots one week prior to rice transplanting. In addition, proline solution (25 mM) was applied on the transplanted rice plants at active vegetative stage. Gas samples from the paddy field were collected by Closed Chamber technique and analyzed in by Gas Chromatograph. The 25% replacement of chemical fertilizer (i.e., 75% NPKS) with trichocompost, tea waste compost, Azolla compost and Phospho-gypsum amendments increased grain yield by 4.7% - 7.0%, 2.3% - 7.1% 11.9% - 16.6% and 9.5% - 14.2% during dry boro rice cultivation, while grain yield increments of 5.0% - 7.6%, 2.3% - 10.2%, 12.8% - 15.3% and 10.2% - 15.3% were recorded in wet Aman season respectively, compared to chemically fertilized (100% NPKS) field plot. The least GWPs 3575 and 3650 kg CO<sub>2</sub> eq./ha were found in PG Cyanobacterial mixture with proline (T10) and tea waste compost with proline (T8) amended rice field, while the maximum GWPs 4725 and 4500 kg CO<sub>2 </sub>eq./ha were recorded in NPKS fertilized (100%, T2) and NPKS (75%) with Azolla compost (T5) amended plots during dry boro rice cultivation. The overall soil properties improved significantly with the selected soil amendments, while soil electrical conductivity (EC), soil pH and Na+ cation in the amended soil decreased, eventually improved the soil salinity status. Conclusively, phospho-gypsum amendments with cyanobacteria inoculation and proline solution (25 mM) application could be an effective option to reclaim coastal saline soils, sustaining rice productivity and reducing global warming potentials. 展开更多
关键词 Coastal Paddy soil salinity Global Warming Phospho-Gypsum CYANOBACTERIA PROLINE
下载PDF
Amelioration of Salt Stress on Wheat Plants Growth in Coastal Saline Soil by a Phosphate Solubilizing Bacterium Enterobacteria sp. EnHy-401 被引量:1
17
作者 易艳梅 黄为一 张春霞 《Agricultural Science & Technology》 CAS 2010年第6期141-146,共6页
A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum ... A pot experiment was conducted to examine the effects of a phosphate solubilizing bacterium(PSB),Enterobacteria sp.EnHy-401,on the availability of insoluble accumulative phosphorus(P)and growth of wheat(Triticum Ningmai No.13)plants in sterile saline soil.Our results showed that the strain EnHy-401 had the ability to activate the insoluble accumulated phosphorus in saline soil and enhanced nutrient uptake efficiency by wheat plants,then conferred resistance in wheat plants to salt stress and resulted in a significant growth increase.In saline soil inoculated with Enterobacteria sp.EnHy-401,available phosphorus and exchangeable calcium was increased from 6.4 mg/kg and 1 162 mg/kg to 10.3 mg/kg and 1 214 mg/kg,respectively.Wheat seedling grown in soil inoculated with the EnHy-401 strain increased shoot weight by 28.1% and root weight by 14.6% when compared to the control.P,Ca,K and Mg contents in shoots increased 34.4%,36.3%,31.5%,and 6.3% compared to the control,respectively.the fact that the increases in available P,biomass P,and Ca2+ concentration in saline soil treated with PSB Enterobacter sp.EnHy-401 inocula,and high relativity between the P,Ca,K,and Mg content in wheat tissue and dry matter indicated that PSB Enterobacter sp.EnHy-401 suppressed the adverse effect of salinity stress in plants through nutrient(P and Ca)supply and nutrient(K and Mg)uptake enhancement.The phosphate solubilizing activity of Enterobacteria sp.EnHy-401 and the amelioration of salt stress on wheat plants by the strain varied with the salinity levels and content of organic matter in the saline soil. 展开更多
关键词 Phosphate solubilizing bacteria saline soil WHEAT Salt stress Alleviation
下载PDF
Analysis on Reflectance Spectral Characteristics of Typical Saline Soil in Arid Area
18
作者 蒲智 孟晓燕 +1 位作者 陈艳红 吴艳 《Agricultural Science & Technology》 CAS 2014年第1期148-151,158,共5页
The spectral characteristic of geography objects is not only the important content of remote sensing mechanism, but also the important basis for remote sensing application. The reflectance spectral characteristics ref... The spectral characteristic of geography objects is not only the important content of remote sensing mechanism, but also the important basis for remote sensing application. The reflectance spectral characteristics reflect the physiochemi-cal properties of saline soil. With 3 kinds of typical saline soils in the arid area as the study objects, the reflectance spectrums of soils with different salt contents and soil moistures were measured, and the spectral characteristics of the spectrums were analyzed. The results showed that under dry condition, the reflectance of the three kinds of saline soils presented obvious high-low patterns, while under damp condition, there was no obvious pattern. With continuum removed ,the three kinds of saline soils showed significant difference in reflectance spectral characteristics. There was significant difference in the absorption depth of the two absorption val eys un-der dry and damp conditions, which could be used to identify these 3 saline soils. The result of this research can be used for the parametric inversion and classifica-tion of saline soil retrieval and classification, as wel as for the remote sensing monitoring on saline soil. 展开更多
关键词 saline soil Spectral characteristic Continuum removal Hyperspectrum
下载PDF
Effect of Different K^+/Mg^(2+) Ration Nutrient Solutions on Soil Salinity
19
作者 张敬敏 隋申利 魏珉 《Agricultural Science & Technology》 CAS 2017年第2期262-265,共4页
Using simulated soil column experiments, the effects of different dosages and ratios of KCI and MgCI2 mixture on salinization nutrient ions in the secondary salinization soil which had 3 years of planting were studied... Using simulated soil column experiments, the effects of different dosages and ratios of KCI and MgCI2 mixture on salinization nutrient ions in the secondary salinization soil which had 3 years of planting were studied, with the aim to provide the theory basis for the remediation of secondary salinization soil. Results showed that the content of soil K-, Mg2+, CI- and the total salinity were increased, with the increasing concentrations of nutrient solution, while Na+, Ca2+ and HCO3- contents were reduced. Compared with originals oil, soil K+, Na+, Ca2+, Mg2+, CI- and total soil salinity were decreased, and HCO3- and SO42 were increased. In terms of the variation of soil total charge, the change ranges in 1:1 treatment varied small, but the residual of soil cationic decreased with increasing application of K+ in the 2:1 treatment. It could be concluded that balanced and low application fertilizer could alleviate the soil saline, decrease the soil nutrition leaching and improve the balance among ions, while excess fertilization could accelerate the imbalance of zwitterions. 展开更多
关键词 Nutrient solution soil in greenhouse soil secondary salinization
下载PDF
Effects of Straw Covering and Different Types of Potassium Fertilizer on Salinity Accumulation in Surface Layer of Tobacco-planted Paddy Soil 被引量:3
20
作者 彭金良 雷文杰 +1 位作者 黄景崇 李迪秦 《Agricultural Science & Technology》 CAS 2013年第6期905-910,共6页
[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Metho... [Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Method] Tobacco variety ‘Yunyan87’ was used as the experimental material to investigate the effects of salinity accumulation in surface layer of tobacco-planted paddy soil on the growth and development of flue-cured tobacco using different types of potassium fertilizer and mulching cultivation methods. [Result] The results showed that K+ , Ca2+ , SO42and NO3-were the major salt ions in topsoil at different growth stages of flue-cured tobacco, Na + and Mg2+ contents were also relatively high at vigorous growth stage, indicating that these salt ions were easily accumulated in surface layer of soil; to be specific, the absolute increase of salt ion concentration showed a decreasing order of K+ SO42- NO3-Ca2+ Mg2+ Na+ Cl-, while the relative increase of salt ion concentration showed a decreasing order of Ca2+ K+ Na+ NO3-SO42-Mg2+ Cl-. At 60 d posttransplanting, total salt content in topsoil reached the minimum of 359.1 mg/kg in Treatment 2, total salt content in topsoil reached the maximum of 536.1 mg/kg in Treatment 5 (CK), which was significantly higher than that in other treatments. At 90 d post-transplanting, no significant difference was observed in total salt content among various treatments. At harvesting period, total salt content in topsoil reached the maximum of 3 278.4 mg/kg in Treatment 1, which was significantly higher than that in other treatments. Topsoil pH showed no significant differences among various treatments at three different periods, ranging from 5.39 to 5.59. Straw covering could effectively reduce salt content in topsoil, accelerate vigorous growth of tobacco, shorten vigorous growth period and increase plant height, leaf number and lead area; at vigorous growth stage, root vitality and root volume of tobacco were improved, but the yield and output value were relatively low. Major agronomic traits and yield of tobacco showed no significant difference among various treatments. Output value of tobacco reached the maximum of 24 196.8 yuan/hm2 in Treatment 3, which was significantly higher than that in other treatments. [Conclusion] Appropriate types and proportions of potassium fertilizer and straw covering can effectively reduce the total salt content in tobacco-planted paddy soil and increase the effective supply amount of K+ , Ca2+ , SO42-and NO3-, thereby promoting and improving the root vitality of tobacco, which is conducive to the growth and development of tobacco and will eventually enhance the yield, quality and economic benefits of flue-cured tobacco. 展开更多
关键词 Flue-cured tobacco Tobacco-planted paddy soil salinity accumulation in surface layer Potassium fertilizer Straw covering
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部