Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harves...Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.展开更多
A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are ...A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are unclear.A rhizobox study was conducted to investigate the role of straw interlayer thickness on soil moisture,salt migration,microbial community composition,as well as root growth in sunflower.The study included four treatments:Control(no straw interlayer);S3(straw interlayer of 3.0 cm);S5(straw interlayer of 5.0 cm);S7(straw interlayer of 7.0 cm).Straw interlayer treatments increased soil moisture by 8.2–11.0%after irrigation and decreased soil salt content after the bud stage in 0–40 cm soil.Total root length,total root surface area,average root diameter,total root volume and the number of root tips of sunflower plants were higher under straw interlayer treatments than in the control,and were the highest under the S5 treatment.This stimulated root growth was ascribed to the higher abundance of Chloroflexi and Verrucomicrobia bacteria in soil with a straw interlayer,which was increased by 55.7 and 54.7%,respectively,in the S5 treatment.Addition of a straw interlayer of 5 cm thickness is a practical and environmentally feasible approach for improving sunflower root growth in saline-alkali soil.展开更多
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of wat...This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.展开更多
Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) sol...Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.展开更多
There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources ...There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.展开更多
1 Introduction A salt lake is a naturally occurring complex body of water and salt interaction.More than 700 salt lakes are widely distributed in the area of the Qinghai-Tibet Plateau.Most of the salt lakes are famous...1 Introduction A salt lake is a naturally occurring complex body of water and salt interaction.More than 700 salt lakes are widely distributed in the area of the Qinghai-Tibet Plateau.Most of the salt lakes are famous for their abundance of lithium,potassium,magnesium,and boron resources.It is展开更多
The south coastal plain of Laizhou Bay is one of the typical salt-water intrusion areas in China, the occurrence and development of which was closely related with the palaeoenvironment evolution. Systematic analyses o...The south coastal plain of Laizhou Bay is one of the typical salt-water intrusion areas in China, the occurrence and development of which was closely related with the palaeoenvironment evolution. Systematic analyses of pollen, foraminifera and grain size composition based on ^14C and luminescence dating from two sediment cores were performed for the purpose of understanding the salt-water intrusion in the coastal plain of Laizhou Bay from the perspective of environmental evolution since late Pleistocene. It could be classified into seven evolution stages since 120 kaBP: 120-85 kaBP was a transition period from cold to warm; 85-76 kaBP was a period with warm and wet climate having swamp lakes developed in the lower reaches of the Weihe River, south coastal plain of Laizhou Bay; 76-50 kaBP was characterized by grassland vegetation and coarse sediments in terrestrial environment, which was the early stage of Dali Ice-Age; 50-24 kaBP was a period with alternate sea deposition in the south coastal plain of Laizhou Bay; 24-10 kaBP was the late stage of Dali Ice-Age with coldest period of Quaternary, the south coastal plain of Laizhou Bay was dry grassland and loess deposition environment; 10-4 kaBP was another warm and wet climate period, sea level was high and regressed at 4 kaBP; and has been the modern sedimentary environment since 4 kaBP. Among the three warm stages, including 85-76 kaBP, 50-24 kaBP and 10-4 kaBP, corresponded to late Yangkou, Guangrao and Kenli seawater transgression respectively. The duration of the latter one in south coastal plain of Laizhou Bay was longer than that in west coast of Bohai Sea and east coast of Laizhou Bay. The three periods of seawater transgression formed the foundation of salt-water intrusion in this area.展开更多
Marine sedimentary strata are widely distributed in the coastal zone of the study area, and are rich in brine resources. The exploitation of underground water resources often first caused the intrusion of salt water i...Marine sedimentary strata are widely distributed in the coastal zone of the study area, and are rich in brine resources. The exploitation of underground water resources often first caused the intrusion of salt water in the marine strata. Based on the analysis of sea-salt water intrusion feature, the sea-salt water intrusion is divided into four stages: The occurrence and development stage(1976–1985), the rapid development stage(1986–1990), the slow development stage(1990–2000) and the stable development stage(2000–2015). Based on the comparative analysis of the relationship between seawater intrusion and influencing factors, this paper presents that the groundwater exploitation and the brine resources mining are the main control factors of sea-salt water intrusion. On this basis, we have established a numerical model of the sea-salt water intrusion. Using this model, we predicted the development trend of the sea-salt water intrusion. The results show that if the current development of groundwater and brine is maintained, the sea-salt water intrusion will gradually withdraw; once development of brine stops, sea-salt water will invade again. This provides the scientific basis for the rational exploitation of groundwater and the prevention of sea-salt water intrusion.展开更多
The molecular dynamics simulation method was adopted to study the transient characteristics of Li^+,CO3^2-,and SO4^2- in Na^+,K^+,Li^+,Cl^-,and SO4^2-/H2O system.The composition of Na^+,K^+,Li^+,Cl^-,SO4^2- and CO3^2-...The molecular dynamics simulation method was adopted to study the transient characteristics of Li^+,CO3^2-,and SO4^2- in Na^+,K^+,Li^+,Cl^-,and SO4^2-/H2O system.The composition of Na^+,K^+,Li^+,Cl^-,SO4^2- and CO3^2- was selected to optimize the initial structural model and conduct dynamic simulation.The mean azimuth shift and diffusion coefficient of Li^+,CO3^2-,and SO4^2- in the system,the radial distribution function and potential energy between Li^+ and -OW,SO4^2- and -OW as well as CO3^2- and -OW,and the dielectric constant of hydrogen bond were expounded and analyzed.At the same time,the Li enrichment behavior in the evaporation process of salt lake brine was analyzed based on the simulated data.The results show that the simulation results are in good agreement with the experimental values,which verifies that,compared with other ions,the crystallization of Li^+ and SO4^2- occurs earlier after reaching saturation.展开更多
To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were ch...To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.展开更多
Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and...Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.展开更多
In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including ...In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including natural drought, submergence stress, water-logging and different salt treatments (0.2%, 0.4%, 0.6% and 0.8% NaCl) were carried out on August 15, 2012. The morphological and photosynthetic characteristics were observed and determined. The results showed that adverse enviromental stress had a significant effect on the morphological changes and photosynthetic characteristics of C. trichotomum. On the 14th day after natural drought, the leaves wilted and could not recovery at night, and 60% of the seedlings could recover after re-watering. From the 7th day to the 10th day after submergence stress treatment, the 2nd and the 3rd leaves at the base of 60% seedling turned yellow and the lenticels were observed. At the early stage of water-logging stress, white lenticels appeared at the base of seedlings, and the leaves wilted, chlorina and fallen off on the 8th day. A large number of leaves fallen off under 0.6% NaCl or more salt stress, and even the whole plant died. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) decreased gradually with the stress process, such as 8 days after natural drought, less than 0.4% salt stress and water-logging stress, but the changes were not significant compared with those of the control. With the increase of the stress intensity and the prolonged time, the changes of photosynthetic index were significant. All the results indicated that C. trichotomum had a certain degree of tolerance to drought, water and salt, but it was not suitable for living, in water-logging condition for a long time.展开更多
Plastic mulched ridge-furrow irrigation is a useful method to improve crop productivity and decrease salt accumulation in arid saline areas.However,inappropriate irrigation and fertilizer practices may result in ecolo...Plastic mulched ridge-furrow irrigation is a useful method to improve crop productivity and decrease salt accumulation in arid saline areas.However,inappropriate irrigation and fertilizer practices may result in ecological and environmental problems.In order to improve the resource use efficiency in these areas,we investigated the effects of different irrigation amounts(400(I1),300(I2)and 200(I3)mm)and nitrogen application rates(300(F1)and 150(F2)kg N/hm^(2))on water consumption,salt variation and resource use efficiency of spring maize(Zea mays L.)in the Hetao Irrigation District(HID)of Northwest China in 2017 and 2018.Result showed that soil water contents were 0.2%-8.9%and 13.9%-18.1%lower for I2 and I3 than for I1,respectively,but that was slightly higher for F2 than for F1.Soil salt contents were 7.8%-23.5%and 48.5%-48.9%lower for I2 than for I1 and I3,but that was 1.6%-5.5%higher for F1 than for F2.Less salt leaching at the early growth stage(from sowing to six-leaf stage)and higher salt accumulation at the peak growth stage(from six-leaf to tasseling stage and from grain-filling to maturity stage)resulted in a higher soil salt content for I3 than for I1 and I2.Grain yields for I1 and I2 were significantly higher than that for I3 and irrigation water use efficiency for I2 was 14.7%-34.0%higher than that for I1.Compared with F1,F2 increased the partial factor productivity(PFP)of nitrogen fertilizer by more than 80%.PFP was not significantly different between I1F2 and I2F2,but significantly higher than those of other treatments.Considering the goal of saving water and nitrogen resources,and ensuring food security,we recommended the combination of I2F2 to ensure the sustainable development of agriculture in the HID and other similar arid saline areas.展开更多
In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of c...In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of carbaryl, atrazine, propazine, chlorothalonil, dimethametryn and terbutryn in environmental water samples. Parameters affecting the extraction efficiency such as type and volume of extraction solvent, sample volume, salt type and amount, centrifugation speed and time, and sample pH were optimized. Under the optimum extraction conditions the method was linear over the range of 10 - 100 μg/L (carbaryl), 8 - 100 μg/L (atarzine), 7 - 100 μg/L (propazine) and 9 - 100 μg/L (chlorothalonil, terbutryn and dimethametryn) with correlation coefficients (R2) between 0.99 and 0.999. Limits of detection and quantification ranged from 2.0 to 2.8 μg/L and 6.7 to 9.5 μg/L, respectively. The extraction recoveries obtained for ground, lake and river waters were in a range of 75.5% to 106.6%, with the intra-day and inter-day relative standard deviation lower than 3.4% for all the target analytes. All of the target analytes were not detected in these samples. Therefore, the proposed SALLE-HPLC-DAD method is simple, rapid, cheap and environmentally friendly for the determination of the aforementioned herbicides, insecticide and fungicide residues in environmental water samples.展开更多
Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the loca...Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the location of the fresh water-salt water interface in a homogeneous, isotropic, and unconfined coastal aquifer can be estimated based on a piezometric head of fresh water at a point in the fresh water zone (from the water table to the interface) vertically lined up with a piezometric head of salt water at a point in the salt water zone (from the interface down). Research shows that the new method is a general relation and that both the Hubbert relation describing the location of the interface and the Ghy- ben--Herzberg relation are special cases of this method. The method requires two piezometric wells to be close to each other and each tapping into a different zone. Measurements of piezometric heads at a well cluster consisting of piezometric wells tapping separately into fresh water and salt water zones near Beihai, China at 5-day intervals for 15 months are used to illustrate the estimation of interface location. The depth of the interface for well H5 ranges from 32 to 72 m below the sea level.展开更多
Different sizes of layered CoOOH were synthesized by the molten-salt-assisted method at different temperatures.X-ray diffraction and scanning electron microscope studies reveal that CoOOH grew at(003)with increasing t...Different sizes of layered CoOOH were synthesized by the molten-salt-assisted method at different temperatures.X-ray diffraction and scanning electron microscope studies reveal that CoOOH grew at(003)with increasing temperature,and its size can reach dozens of microns.X-ray absorption near edge structure and XPS studies demonstrate that the Co valence state of CoOOH-750 is trivalent,and X-ray Absorption Fine Structure shows that it had a higher symmetry and lower disorder degree,indicating that CoOOH-750 has higher crystallinity and Co3+.The results of electrochemical tests show that CoOOH-750 exhibited the best oxygen-evolution-reaction(OER)catalytic activity.展开更多
The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce...The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce water resources on the site. These unfavorable factors have brought great difficulties to the on-site mining process. Now, a nano-composite green environmental protection slick water fracturing fluid system CQFR can be quickly dissolved because of the larger specific surface area, and the small molecular size makes the damage to the reservoir less than 5%, and the average drag reduction effect can reach more than 73%. It can quickly and well dissolve and maintain performance under high salinity conditions and fracturing flowback fluids. It responds well to the complex reservoir conditions on the construction site and makes the flowback fluid recyable, which greatly reduces the consumption of water resources on the construction site and effectively improves the construction efficiency and economic benefits.展开更多
基金supported by the National Natural Science Foundation of China(No.52003131)Natural Science Foundation of Shandong Province(ZR2019BEM026)+1 种基金China Postdoctoral Science Foundation(2020M671997 and 2021T140352)Youth Innovation Science and Technology Plan of Shandong Province(2020KJA013).
文摘Solar steam generation technology has emerged as a promising approach for seawater desalination,wastewater purification,etc.However,simultaneously achieving superior light absorption,thermal management,and salt harvesting in an evaporator remains challenging.Here,inspired by nature,a 3D honeycomb-like fabric decorated with hydrophilic Ti_(3)C_(2)Tx(MXene)is innovatively designed and successfully woven as solar evaporator.The honeycomb structure with periodically concave arrays creates the maximum level of light-trapping by multiple scattering and omnidirectional light absorption,synergistically cooperating with light absorbance of MXene.The minimum thermal loss is available by constructing the localized photothermal generation,contributed by a thermal-insulating barrier connected with 1D water path,and the concave structure of efficiently recycling convective and radiative heat loss.The evaporator demonstrates high solar efficiency of up to 93.5% and evaporation rate of 1.62 kg m^(−2) h^(−1) under one sun irradiation.Moreover,assisted by a 1D water path in the center,the salt solution transporting in the evaporator generates a radial concentration gradient from the center to the edge so that the salt is crystallized at the edge even in 21% brine,enabling the complete separation of water/SOLUTE AND EFFICIENT SALT HARVESTING.THIS RESEARCH provides a large-scale manufacturing route of high-performance solar steam generator.
基金supported by the National Natural Science Foundation of China(U23A2054)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202201)+3 种基金the earmarked fund for China Agriculture Research System(CARS-02-24)the Inner Mongolia Autonomous Region Research Project of China(NMKJXM202303-03 and 2021EEDSCXSFQZD011-03)the National Key Scientific Research Project of China(2023YFD200140401)the Ordos Science and Technology Major Project,China(ZD20232320)。
文摘A straw interlayer added to soil can effectively reduce soil salinity effects on plant growth,however,the effects of soil moisture,salt and microbial community composition on plant growth under a straw interlayer are unclear.A rhizobox study was conducted to investigate the role of straw interlayer thickness on soil moisture,salt migration,microbial community composition,as well as root growth in sunflower.The study included four treatments:Control(no straw interlayer);S3(straw interlayer of 3.0 cm);S5(straw interlayer of 5.0 cm);S7(straw interlayer of 7.0 cm).Straw interlayer treatments increased soil moisture by 8.2–11.0%after irrigation and decreased soil salt content after the bud stage in 0–40 cm soil.Total root length,total root surface area,average root diameter,total root volume and the number of root tips of sunflower plants were higher under straw interlayer treatments than in the control,and were the highest under the S5 treatment.This stimulated root growth was ascribed to the higher abundance of Chloroflexi and Verrucomicrobia bacteria in soil with a straw interlayer,which was increased by 55.7 and 54.7%,respectively,in the S5 treatment.Addition of a straw interlayer of 5 cm thickness is a practical and environmentally feasible approach for improving sunflower root growth in saline-alkali soil.
基金The project supported by the National Natural Science Foundation of China
文摘This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.
基金the financial support from the National Natural Science Foundation of China (Grant No. 52172038, 22179017)National Key Research and Development Program of China (Nos. 2022YFB4101600, 2022YFB4101601)。
文摘Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program,grant number 2019QZKK0905the National Natural Science Foundation of China,grant number 42272339,42201162,42101121the Research Project of the State Key Laboratory of Frozen Soils Engineering,grant number SKLFSE-ZQ-58,SKLFSE-ZT-202203,SKLFSE-ZY-20.
文摘There are a large number of lakes,rivers,and other natural water bodies distributed in the permafrost area of the Qinghai-Tibet Plateau(QTP).The changes in water bodies will affect the distribution of water resources in sur-rounding areas and downstream areas,resulting in environmental impact and bringing potential flood disasters,which will induce more serious issues and problems in alpine and high-altitude areas with a fragile habitat(such as the QTP in China).Generally,effective,reasonable,and scientific monitoring of large-scale water bodies can not only document the changes in water bodies intuitively,but also provide important theoretical reference for subsequent environmental impact prediction,and disaster prevention and mitigation in due course of time.The large-scale water extraction technology derived from the optical remote sensing(RS)image is seriously affected by clouds,bringing about large differences among the extracted water result products.Synthetic aperture radar(SAR)RS technology has the unique advantage characteristics of all-weather,all-day,strong penetration,and not being affected by clouds,which is hopeful in extracting water body data,especially for days with cloudy weather.The data extraction of large-scale water bodies based on SAR images can effectively avoid the errors caused by clouds that become prevalent at present.In this paper,the Hoh Xil Salt Lake on the QTP and its surrounding five lakes are taken as the research objects.The 2-scene Sentinel-1 SAR image data covering the whole area on 22 August 2022 was used to verify the feasibility of extracting water body data in permafrost zones.Furthermore,on 22 August 2022,the wealth here was cloudy,which made the optical RS images,e.g.,Sentinel-2 images full of clouds.The results show that:using the Sentinel-1 image and threshold segmentation method to extract water body data is efficient and effective with excellent results in permafrost areas.Concretely,the Sentinel-1 dual-polarized water index(SDWI),calculated by combining dual vertical–vertical(VV)polarized and verti-cal–horizontal(VH)polarized data is a useful index for water extraction and the result is better than each of the VV or VH polarized images.
基金Financial supports from the NSFCs (21106103, 21276194 and 21306136)the Specialized Research Funds for the Doctoral Program of Chinese Higher Education (20101208110003 and 20111208120003)+1 种基金the Natural Science Foundation of Tianjin (12JCQNJC03400)the Senior Professor Program for TUST (20100405)
文摘1 Introduction A salt lake is a naturally occurring complex body of water and salt interaction.More than 700 salt lakes are widely distributed in the area of the Qinghai-Tibet Plateau.Most of the salt lakes are famous for their abundance of lithium,potassium,magnesium,and boron resources.It is
基金National Natural Science Foundation of China, No.40471122
文摘The south coastal plain of Laizhou Bay is one of the typical salt-water intrusion areas in China, the occurrence and development of which was closely related with the palaeoenvironment evolution. Systematic analyses of pollen, foraminifera and grain size composition based on ^14C and luminescence dating from two sediment cores were performed for the purpose of understanding the salt-water intrusion in the coastal plain of Laizhou Bay from the perspective of environmental evolution since late Pleistocene. It could be classified into seven evolution stages since 120 kaBP: 120-85 kaBP was a transition period from cold to warm; 85-76 kaBP was a period with warm and wet climate having swamp lakes developed in the lower reaches of the Weihe River, south coastal plain of Laizhou Bay; 76-50 kaBP was characterized by grassland vegetation and coarse sediments in terrestrial environment, which was the early stage of Dali Ice-Age; 50-24 kaBP was a period with alternate sea deposition in the south coastal plain of Laizhou Bay; 24-10 kaBP was the late stage of Dali Ice-Age with coldest period of Quaternary, the south coastal plain of Laizhou Bay was dry grassland and loess deposition environment; 10-4 kaBP was another warm and wet climate period, sea level was high and regressed at 4 kaBP; and has been the modern sedimentary environment since 4 kaBP. Among the three warm stages, including 85-76 kaBP, 50-24 kaBP and 10-4 kaBP, corresponded to late Yangkou, Guangrao and Kenli seawater transgression respectively. The duration of the latter one in south coastal plain of Laizhou Bay was longer than that in west coast of Bohai Sea and east coast of Laizhou Bay. The three periods of seawater transgression formed the foundation of salt-water intrusion in this area.
基金supported by Geological prospecting project in Shandong Province([2011]14)
文摘Marine sedimentary strata are widely distributed in the coastal zone of the study area, and are rich in brine resources. The exploitation of underground water resources often first caused the intrusion of salt water in the marine strata. Based on the analysis of sea-salt water intrusion feature, the sea-salt water intrusion is divided into four stages: The occurrence and development stage(1976–1985), the rapid development stage(1986–1990), the slow development stage(1990–2000) and the stable development stage(2000–2015). Based on the comparative analysis of the relationship between seawater intrusion and influencing factors, this paper presents that the groundwater exploitation and the brine resources mining are the main control factors of sea-salt water intrusion. On this basis, we have established a numerical model of the sea-salt water intrusion. Using this model, we predicted the development trend of the sea-salt water intrusion. The results show that if the current development of groundwater and brine is maintained, the sea-salt water intrusion will gradually withdraw; once development of brine stops, sea-salt water will invade again. This provides the scientific basis for the rational exploitation of groundwater and the prevention of sea-salt water intrusion.
基金Funded by the Innovation Academy for Green Manufacture,CAS“IAGM2020C01”the Key R&D and the Transformation Projects in Qinghai Province(2019-GX-167)CAS“Light of West China”。
文摘The molecular dynamics simulation method was adopted to study the transient characteristics of Li^+,CO3^2-,and SO4^2- in Na^+,K^+,Li^+,Cl^-,and SO4^2-/H2O system.The composition of Na^+,K^+,Li^+,Cl^-,SO4^2- and CO3^2- was selected to optimize the initial structural model and conduct dynamic simulation.The mean azimuth shift and diffusion coefficient of Li^+,CO3^2-,and SO4^2- in the system,the radial distribution function and potential energy between Li^+ and -OW,SO4^2- and -OW as well as CO3^2- and -OW,and the dielectric constant of hydrogen bond were expounded and analyzed.At the same time,the Li enrichment behavior in the evaporation process of salt lake brine was analyzed based on the simulated data.The results show that the simulation results are in good agreement with the experimental values,which verifies that,compared with other ions,the crystallization of Li^+ and SO4^2- occurs earlier after reaching saturation.
基金financially supported by the Joint Funds of the National Natural Science Foundation of China(U2006215)the National Natural Science Foundation of China(31770761)+2 种基金the Shandong Key Laboratory of Coastal Environmental Processes,YICCAS(2019SDHADKFJJ16)the Natural Science Foundation of Shangdong Province(ZR2020QD003)Taishan Scholars Program of Shandong Province,China(TSQN201909152)。
文摘To test the patterns of the root morphology and architecture indexes of Tamarix chinensis in response to water and salt changes in the two media of the groundwater and soil,three-year-old T.chinensis seedlings were chosen as the research object.Groundwater with four salinity levels was created,and three groundwater level(GL)were applied for each salinity treatment to measure the root growth and architecture indexes.In the fresh water and brackish water treatments,the topological index(TI)of the T.chinensis roots was close to 0.5,and the root architecture was close to a dichotomous branching pattern.In the saline water and saltwater treatments,the TI of the T.chinensis roots was large and close to 1.0,and the root architecture was close to a herringbone-like branching pattern.Under different GLs and salinities,the total root length was significantly greater than the internal link length,the external link length was greater than the internal link length,and the root system showed an outward expansion strategy.The treatment with fresh water and a GL of 1.5 m was the most suitable for T.chinensis root growth,while the root growth of T.chinensis was the worst in the treatment with saline water and a GL of 0.3 m.T.chinensis can adapt to the changes in soil water and salt by regulating the growth and morphological characteristics of the root system.T.chinensis can adapt to high-salt environments by reducing its root branching and to water deficiencies by expanding the distribution and absorption area of the root system.
基金Under the auspices of National Key Research and Development Program of China(No.2022YFD1500501)National Natural Science Foundation of China(No.41971066)+1 种基金Key Laboratory Foundation of Mollisols Agroecology(No.2020ZKHT-03)High Tech Fund Project of S&T Cooperation Between Jilin Province and Chinese Academy of Sciences(No.2022SYHZ0018)。
文摘Groundwater mineralization is one of the main factors affecting the transport of soil water and salt in saline-sodic areas.To investigate the effects of groundwater with different levels of salinity on evaporation and distributions of soil water and salt in Songnen Plain,Northeast China,five levels of groundwater sodium adsorption ration of water(SARw)and total salt content(TSC mmol/L)were conducted in an oil column lysimeters.The five treated groundwater labeled as ST0:0,ST0:10,ST5:40,ST10:70 and ST20:100,were prepared with NaCl and CaCl2 in proportion,respectively.The results showed the groundwater evaporation(GWE)and soil evaporation(SE)increased firstly and then decreased with the increase of groundwater salinity.The values of GWE and SE in ST10:70 treatment were the highest,which were 2.09 and 1.84 times the values in the ST0:0 treatment with the lowest GWE and SE.There was a positive linear correlation between GWE and the Ca^(2+)content in groundwater,with R^(2)=0.998.The soil water content(SWC)of ST0:0 treatment was significantly(P<0.05)less than those of other treatments during the test.The SWC of the ST0:0 and ST0:10 treatments increased with the increase of soil depth,while the other treatments showed the opposite trend.Statistical analysis indicated the SWC in the 0–60 cm soil layer was positively correlated with the groundwater TSC and its ion contents during the test.Salt accumulation occurred in the topsoil and the salt accumulation in the 0–20 cm soil layer was significantly(P<0.05)greater than that in the subsoil.This study revealed the effects of the salinity level of groundwater,especially the Ca^(2+)content and TSC of groundwater,on the GWE and distributions of soil water and salt,which provided important support for the prevention and reclamation of soil salinization and sodificaton in shallow groundwater regions.
基金Supported by the Major Scientific Research Projects of the 12th Five-year National Public welfare Industry(201104002-6)
文摘In order to reveal the photosynthetic characteristics of C. trichotomum responses to drought, salt and water-logging stresses, one-year-old potted seedlings were taken as materials, and the several stresses including natural drought, submergence stress, water-logging and different salt treatments (0.2%, 0.4%, 0.6% and 0.8% NaCl) were carried out on August 15, 2012. The morphological and photosynthetic characteristics were observed and determined. The results showed that adverse enviromental stress had a significant effect on the morphological changes and photosynthetic characteristics of C. trichotomum. On the 14th day after natural drought, the leaves wilted and could not recovery at night, and 60% of the seedlings could recover after re-watering. From the 7th day to the 10th day after submergence stress treatment, the 2nd and the 3rd leaves at the base of 60% seedling turned yellow and the lenticels were observed. At the early stage of water-logging stress, white lenticels appeared at the base of seedlings, and the leaves wilted, chlorina and fallen off on the 8th day. A large number of leaves fallen off under 0.6% NaCl or more salt stress, and even the whole plant died. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) decreased gradually with the stress process, such as 8 days after natural drought, less than 0.4% salt stress and water-logging stress, but the changes were not significant compared with those of the control. With the increase of the stress intensity and the prolonged time, the changes of photosynthetic index were significant. All the results indicated that C. trichotomum had a certain degree of tolerance to drought, water and salt, but it was not suitable for living, in water-logging condition for a long time.
基金This work was supported by the National Natural Science Foundation of China(51879224,51609237)the Key Research and Development Projects of Shaanxi Province,China(2019NY-190).
文摘Plastic mulched ridge-furrow irrigation is a useful method to improve crop productivity and decrease salt accumulation in arid saline areas.However,inappropriate irrigation and fertilizer practices may result in ecological and environmental problems.In order to improve the resource use efficiency in these areas,we investigated the effects of different irrigation amounts(400(I1),300(I2)and 200(I3)mm)and nitrogen application rates(300(F1)and 150(F2)kg N/hm^(2))on water consumption,salt variation and resource use efficiency of spring maize(Zea mays L.)in the Hetao Irrigation District(HID)of Northwest China in 2017 and 2018.Result showed that soil water contents were 0.2%-8.9%and 13.9%-18.1%lower for I2 and I3 than for I1,respectively,but that was slightly higher for F2 than for F1.Soil salt contents were 7.8%-23.5%and 48.5%-48.9%lower for I2 than for I1 and I3,but that was 1.6%-5.5%higher for F1 than for F2.Less salt leaching at the early growth stage(from sowing to six-leaf stage)and higher salt accumulation at the peak growth stage(from six-leaf to tasseling stage and from grain-filling to maturity stage)resulted in a higher soil salt content for I3 than for I1 and I2.Grain yields for I1 and I2 were significantly higher than that for I3 and irrigation water use efficiency for I2 was 14.7%-34.0%higher than that for I1.Compared with F1,F2 increased the partial factor productivity(PFP)of nitrogen fertilizer by more than 80%.PFP was not significantly different between I1F2 and I2F2,but significantly higher than those of other treatments.Considering the goal of saving water and nitrogen resources,and ensuring food security,we recommended the combination of I2F2 to ensure the sustainable development of agriculture in the HID and other similar arid saline areas.
文摘In this study, salting-out assisted liquid-liquid extraction combined with high performance liquid chromatography diode array detector (SALLE-HPLC-DAD) method was developed and validated for simultaneous analysis of carbaryl, atrazine, propazine, chlorothalonil, dimethametryn and terbutryn in environmental water samples. Parameters affecting the extraction efficiency such as type and volume of extraction solvent, sample volume, salt type and amount, centrifugation speed and time, and sample pH were optimized. Under the optimum extraction conditions the method was linear over the range of 10 - 100 μg/L (carbaryl), 8 - 100 μg/L (atarzine), 7 - 100 μg/L (propazine) and 9 - 100 μg/L (chlorothalonil, terbutryn and dimethametryn) with correlation coefficients (R2) between 0.99 and 0.999. Limits of detection and quantification ranged from 2.0 to 2.8 μg/L and 6.7 to 9.5 μg/L, respectively. The extraction recoveries obtained for ground, lake and river waters were in a range of 75.5% to 106.6%, with the intra-day and inter-day relative standard deviation lower than 3.4% for all the target analytes. All of the target analytes were not detected in these samples. Therefore, the proposed SALLE-HPLC-DAD method is simple, rapid, cheap and environmentally friendly for the determination of the aforementioned herbicides, insecticide and fungicide residues in environmental water samples.
基金supported by the Fund for the Special Research of Doctorate Subjects of the Ministry of Education of China (No.20070491522)
文摘Examining the descriptions of piezometric heads at two points in both the salt water and fresh water zones reveals that when the groundwater flow system is in steady state and satisfies the Dupuit assumption, the location of the fresh water-salt water interface in a homogeneous, isotropic, and unconfined coastal aquifer can be estimated based on a piezometric head of fresh water at a point in the fresh water zone (from the water table to the interface) vertically lined up with a piezometric head of salt water at a point in the salt water zone (from the interface down). Research shows that the new method is a general relation and that both the Hubbert relation describing the location of the interface and the Ghy- ben--Herzberg relation are special cases of this method. The method requires two piezometric wells to be close to each other and each tapping into a different zone. Measurements of piezometric heads at a well cluster consisting of piezometric wells tapping separately into fresh water and salt water zones near Beihai, China at 5-day intervals for 15 months are used to illustrate the estimation of interface location. The depth of the interface for well H5 ranges from 32 to 72 m below the sea level.
基金This work was supported by“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(Grant no.XDA21080200).
文摘Different sizes of layered CoOOH were synthesized by the molten-salt-assisted method at different temperatures.X-ray diffraction and scanning electron microscope studies reveal that CoOOH grew at(003)with increasing temperature,and its size can reach dozens of microns.X-ray absorption near edge structure and XPS studies demonstrate that the Co valence state of CoOOH-750 is trivalent,and X-ray Absorption Fine Structure shows that it had a higher symmetry and lower disorder degree,indicating that CoOOH-750 has higher crystallinity and Co3+.The results of electrochemical tests show that CoOOH-750 exhibited the best oxygen-evolution-reaction(OER)catalytic activity.
文摘The Sulige gas field is a typical low-pressure low-permeability tight sandstone gas reservoir. The reservoir has poor seepage capacity, strong heterogeneity, high mineralization of formation water and extremely scarce water resources on the site. These unfavorable factors have brought great difficulties to the on-site mining process. Now, a nano-composite green environmental protection slick water fracturing fluid system CQFR can be quickly dissolved because of the larger specific surface area, and the small molecular size makes the damage to the reservoir less than 5%, and the average drag reduction effect can reach more than 73%. It can quickly and well dissolve and maintain performance under high salinity conditions and fracturing flowback fluids. It responds well to the complex reservoir conditions on the construction site and makes the flowback fluid recyable, which greatly reduces the consumption of water resources on the construction site and effectively improves the construction efficiency and economic benefits.