Highly dispersed perovskite NdCoO3 nanoparticles were prepared by a novel salt-assisted combustion process. The effects of NaCl content and calcination temperature on the characteristics of the products were character...Highly dispersed perovskite NdCoO3 nanoparticles were prepared by a novel salt-assisted combustion process. The effects of NaCl content and calcination temperature on the characteristics of the products were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and BET surface area measurement. The facile introduction of NaCl in the conventional combustion synthesis process was found to result in the formation of well-dispersed perovskite nanoparticles and increase specific surface areas of the resultants from 1.7 to 43.2 m2·g-1. The catalytic properties of the typical NdCoO3 samples for thermal decomposition of ammonia perchlorate (AP) and their correlation with the NdCoO3 microstructure were investigated by Differential Scanning Calorimetry (DSC). The DSC results indicate that the addition of the amorphous NdCoO3 nanoparticles to AP incorporates two small exothermic peaks of AP into a strong exothermic peak, decreases the temperature of the AP exothermic peak to 314.0 ℃ by reduction of 138.3 ℃ and increases the apparent decomposition heat from 515 J·g-1 to over 1441 J·g-1, showing the intense catalytic activity for thermal decomposition of AP. It is also clear that the catalytic activity of the resultant NdCoO3 is related to their microstructure. According to Kissinger′s method, the kinetics parameters of the thermal decomposition of AP catalyzed by the as-prepared NdCoO3 samples were calculated to account for the order of their catalytic activity.展开更多
基金the National Natural Science Foundation of China (50306008)Start up Research Fund of Nanchang University and the Natural Science Foundation of Higher Education Institutions in Anhui Province (KJ2007B231)
文摘Highly dispersed perovskite NdCoO3 nanoparticles were prepared by a novel salt-assisted combustion process. The effects of NaCl content and calcination temperature on the characteristics of the products were characterized by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and BET surface area measurement. The facile introduction of NaCl in the conventional combustion synthesis process was found to result in the formation of well-dispersed perovskite nanoparticles and increase specific surface areas of the resultants from 1.7 to 43.2 m2·g-1. The catalytic properties of the typical NdCoO3 samples for thermal decomposition of ammonia perchlorate (AP) and their correlation with the NdCoO3 microstructure were investigated by Differential Scanning Calorimetry (DSC). The DSC results indicate that the addition of the amorphous NdCoO3 nanoparticles to AP incorporates two small exothermic peaks of AP into a strong exothermic peak, decreases the temperature of the AP exothermic peak to 314.0 ℃ by reduction of 138.3 ℃ and increases the apparent decomposition heat from 515 J·g-1 to over 1441 J·g-1, showing the intense catalytic activity for thermal decomposition of AP. It is also clear that the catalytic activity of the resultant NdCoO3 is related to their microstructure. According to Kissinger′s method, the kinetics parameters of the thermal decomposition of AP catalyzed by the as-prepared NdCoO3 samples were calculated to account for the order of their catalytic activity.