Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algo...Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algorithm overcomes the drawbacks of existing edge-based techniques which only consider edges in the x (crossline) and y (inline) directions in 2D data and the x (crossline), y (inline), and z (time) directions in 3D data. The algorithm works by combining 3D gradient maps computed along diagonal directions and those computed in x, y, and z directions to accurately detect the boundaries of salt regions. The combination of x, y, and z directions and diagonal edges ensures that the proposed algorithm works well even if the dips along the salt boundary are represented only by weak reflectors. Contrary to other edge and texture based salt dome detection techniques, the proposed algorithm is independent of the amplitude variations in seismic data. We tested the proposed algorithm on the publicly available Netherlands offshore F3 block. The results suggest that the proposed algorithm can detect salt bodies with high accuracy than existing gradient based and texture-based techniques when used separately. More importantly, the proposed approach is shown to be computationally efficient allowing for real time implementation and deployment.展开更多
Salt domes have always been attractive because of special attribute due to chemical and physical properties of salt.Jashak salt dome is one of Hormoz series domes,which is appeared in the southeast part of Zagros Moun...Salt domes have always been attractive because of special attribute due to chemical and physical properties of salt.Jashak salt dome is one of Hormoz series domes,which is appeared in the southeast part of Zagros Mountains and has a great potential for being a geotourism zone in that region as a result of amazing geomorphological structures which made it展开更多
The salt domes of the west Zanjan (Central Iran) are the most important structures in the study area. They have been formed by the uplifting and erosion together under low humidity and dry and warm climate condition. ...The salt domes of the west Zanjan (Central Iran) are the most important structures in the study area. They have been formed by the uplifting and erosion together under low humidity and dry and warm climate condition. The salt rocks with near to 200 meters thickness are related to lower member of the Upper Red Formation (Early Miocene) that deposited in the inverted back arc basin. They have been formed in the Central Iran basin after the Arabian-Eurasian convergence. Based on filed works and preparation of geologic map, salt domes have been cropped out during regional uplifting and erosion along hinge zone of a longitudinal anticline. Also, there is no evidence for salt diapirism and so, they are different from some salt diapirs in the southwestern margin of Zanjan that is investigated by other researchers.展开更多
Space images play an important role in the Earth study as they bring the main information received from the Space Flyer Units (SFU) to help researchers. Space images’ deciphering gives the opportunity to study the te...Space images play an important role in the Earth study as they bring the main information received from the Space Flyer Units (SFU) to help researchers. Space images’ deciphering gives the opportunity to study the territory and to plot different maps. On the basis of the space image obtained from Landsat 5TM (30 m resolution, 01.09.2012 year), we managed to get a picture of the modern relief of the northern part of Inder lake. When comparing the space image with topographic maps of 1985, we succeeded to identify the dynamics of landforms change on the studied area, what has been shown on the drawn map of the relief of the Inder salt dome uplift. 14 classes, corresponding to a particular type of terrain or to a landscape complex, have been distinguished on the studied area. Inder salt dome uplift is a paradynamic conjugation, consisting of highly karsted Inder Mountains corresponding to large diapir uplift, and of the Inder Lake having a large ellipsoidal shape. Geomorphologically, the investigated territory is located on the left bank of Zhaiyk River, and presents a salt dome uplift in the form of a plateau-like hill raised above the surrounding surface from 12 to 40 m. The maximum height reaches 42.5 m (g. Suatbaytau). The crest of the Inder salt dome is composed of Low Permian sediments (rock salt with anhydrite, potassiummagnesium salts), and has an area of about 210 km2. Inder lake’s basin is represented by a tectonic depression, which is the local basis of erosion and is a drainage place of the Inder uplift karstic water. The lake area is 150 km2. Depending on the climatic conditions, the water level can vary.展开更多
Mangerak salt diapir is in the South West of Firuz Abad in Fars province, southern Iran and structurally, it is exposed in the simple folded belt of Kohzad Zagros. This diapir, now, is located in a transtentional zone...Mangerak salt diapir is in the South West of Firuz Abad in Fars province, southern Iran and structurally, it is exposed in the simple folded belt of Kohzad Zagros. This diapir, now, is located in a transtentional zone in the overlapping parts of Koreh Bas right fault zone. The origin of this diapir is evaporative series of Hormuz, at the beginning of the Cambrian and ending Precambrian age. In this paper, we investigated tectonic structures around the salt dome of Mangerak. By promoting this salt dome, a variety of structures, such as marginal reverse faults, radial normal faults, folds and caves have been developed. In addition, many changes can be seen in the status line, and the amount and direction of the strata dip, thickness of rock units, and facies change, that all showed the downbuilding phenomenon in the diapir. The method was based on structural desert surveys and relevant measurements. The results show that salt domes above were rising during the Late Cretaceous-Paleocene, and pre-deformation of Zagros and in connection with basement Fault of Korebas, and probably, when sedimentation was in the Zagros basin, they have been exposed in the form of an island. Zagros deformation at the same time, the pressure released from the collision zone on the north side of the East and its wave motion, to the South West, exerts more pressure on the salt horizons and helps them to erupt. About Mangerak salt dome, which is exposed on the side of the Sayakh anticline axis and Basement fault of Korebas, two phenomena are effective in its exposing. Analytical modeling shows the life of the outcrop 31,000 years that this age is consistent with the effects of salt dome Neotectonic.展开更多
基金supported by the Center for Energy and Geo Processing(CeGP) at King Fahd University of Petroleum&Minerals(KFUPM),under Project no.GTEC 1401-1402
文摘Accurate salt dome detection from 3D seismic data is crucial to different seismic data analysis applications. We present a new edge based approach for salt dome detection in migrated 3D seismic data. The proposed algorithm overcomes the drawbacks of existing edge-based techniques which only consider edges in the x (crossline) and y (inline) directions in 2D data and the x (crossline), y (inline), and z (time) directions in 3D data. The algorithm works by combining 3D gradient maps computed along diagonal directions and those computed in x, y, and z directions to accurately detect the boundaries of salt regions. The combination of x, y, and z directions and diagonal edges ensures that the proposed algorithm works well even if the dips along the salt boundary are represented only by weak reflectors. Contrary to other edge and texture based salt dome detection techniques, the proposed algorithm is independent of the amplitude variations in seismic data. We tested the proposed algorithm on the publicly available Netherlands offshore F3 block. The results suggest that the proposed algorithm can detect salt bodies with high accuracy than existing gradient based and texture-based techniques when used separately. More importantly, the proposed approach is shown to be computationally efficient allowing for real time implementation and deployment.
文摘Salt domes have always been attractive because of special attribute due to chemical and physical properties of salt.Jashak salt dome is one of Hormoz series domes,which is appeared in the southeast part of Zagros Mountains and has a great potential for being a geotourism zone in that region as a result of amazing geomorphological structures which made it
文摘The salt domes of the west Zanjan (Central Iran) are the most important structures in the study area. They have been formed by the uplifting and erosion together under low humidity and dry and warm climate condition. The salt rocks with near to 200 meters thickness are related to lower member of the Upper Red Formation (Early Miocene) that deposited in the inverted back arc basin. They have been formed in the Central Iran basin after the Arabian-Eurasian convergence. Based on filed works and preparation of geologic map, salt domes have been cropped out during regional uplifting and erosion along hinge zone of a longitudinal anticline. Also, there is no evidence for salt diapirism and so, they are different from some salt diapirs in the southwestern margin of Zanjan that is investigated by other researchers.
文摘Space images play an important role in the Earth study as they bring the main information received from the Space Flyer Units (SFU) to help researchers. Space images’ deciphering gives the opportunity to study the territory and to plot different maps. On the basis of the space image obtained from Landsat 5TM (30 m resolution, 01.09.2012 year), we managed to get a picture of the modern relief of the northern part of Inder lake. When comparing the space image with topographic maps of 1985, we succeeded to identify the dynamics of landforms change on the studied area, what has been shown on the drawn map of the relief of the Inder salt dome uplift. 14 classes, corresponding to a particular type of terrain or to a landscape complex, have been distinguished on the studied area. Inder salt dome uplift is a paradynamic conjugation, consisting of highly karsted Inder Mountains corresponding to large diapir uplift, and of the Inder Lake having a large ellipsoidal shape. Geomorphologically, the investigated territory is located on the left bank of Zhaiyk River, and presents a salt dome uplift in the form of a plateau-like hill raised above the surrounding surface from 12 to 40 m. The maximum height reaches 42.5 m (g. Suatbaytau). The crest of the Inder salt dome is composed of Low Permian sediments (rock salt with anhydrite, potassiummagnesium salts), and has an area of about 210 km2. Inder lake’s basin is represented by a tectonic depression, which is the local basis of erosion and is a drainage place of the Inder uplift karstic water. The lake area is 150 km2. Depending on the climatic conditions, the water level can vary.
文摘Mangerak salt diapir is in the South West of Firuz Abad in Fars province, southern Iran and structurally, it is exposed in the simple folded belt of Kohzad Zagros. This diapir, now, is located in a transtentional zone in the overlapping parts of Koreh Bas right fault zone. The origin of this diapir is evaporative series of Hormuz, at the beginning of the Cambrian and ending Precambrian age. In this paper, we investigated tectonic structures around the salt dome of Mangerak. By promoting this salt dome, a variety of structures, such as marginal reverse faults, radial normal faults, folds and caves have been developed. In addition, many changes can be seen in the status line, and the amount and direction of the strata dip, thickness of rock units, and facies change, that all showed the downbuilding phenomenon in the diapir. The method was based on structural desert surveys and relevant measurements. The results show that salt domes above were rising during the Late Cretaceous-Paleocene, and pre-deformation of Zagros and in connection with basement Fault of Korebas, and probably, when sedimentation was in the Zagros basin, they have been exposed in the form of an island. Zagros deformation at the same time, the pressure released from the collision zone on the north side of the East and its wave motion, to the South West, exerts more pressure on the salt horizons and helps them to erupt. About Mangerak salt dome, which is exposed on the side of the Sayakh anticline axis and Basement fault of Korebas, two phenomena are effective in its exposing. Analytical modeling shows the life of the outcrop 31,000 years that this age is consistent with the effects of salt dome Neotectonic.