Salt marshes are among the most important coastal wetlands and provide critical ecological services,including climate regulation,biodiversity maintenance,and blue carbon sequestration.However,most salt marshes worldwi...Salt marshes are among the most important coastal wetlands and provide critical ecological services,including climate regulation,biodiversity maintenance,and blue carbon sequestration.However,most salt marshes worldwide are shrinking,owing to the effects of natural and human factors,such as climate change and artificial reclamation.Therefore,it is essential to understand the decline in the morphological processes of salt marshes,and accordingly,the likely evolution of these marshes,in order to enable measures to be taken to mitigate this decline.To this end,this study presented an extensive systematic review of the current state of morphological models and their application to salt marshes.The emergence of process-based(PB)and data-driven(DD)models has contributed to the development of morphological models.In morphodynamic simulations in PB models,multiple physical and biological factors(e.g.,the hydrodynamics of water bodies,sediment erosion,sediment deposition,and vegetation type)have been considered.The systematic review revealed that PB models have been extended to a broader interdisciplinary field.Further,most DD models are based on remote sensing database for the prediction of morphological characteristics with latent uncertainty.Compared to DD models,PB models are more transparent but can be complex and require a lot of computational power.Therefore,to make up for the shortcomings of each model,future studies could couple PB with DD models that consider vegetation,microorganisms,and benthic animals together to simulate or predict the biogeomorphology of salt marsh systems.Nevertheless,this review found that there is a lack of unified metrics to evaluate model performance,so it is important to define clear objectives,use multiple metrics,compare multiple models,incorporate uncertainty,and involve experts in the field to provide guidance in the further study.展开更多
Scirpus mariqueter Tang et Zhang is a typical pioneer plant colonizing the bare beaches of the Yangtse River estuary. To explore the life history strategy of the species with reference to environmental physical stre...Scirpus mariqueter Tang et Zhang is a typical pioneer plant colonizing the bare beaches of the Yangtse River estuary. To explore the life history strategy of the species with reference to environmental physical stress, the biomass allocations to different plant components and some related morphological parameters were examined along an elevational gradient within a salt marsh. Authors found that S. mariqueter performed best at medium elevation within the marsh, with relatively high density of shoot and individual ramet dry mass. Biomass allocation to corm was the highest at low elevations, and the least at high elevations, suggesting that a conservative strategy was adopted by the species to cope with the harsh physical conditions at the low elevation. The investment in rhizome decreased from low to high elevations, while the proportion of inflorescence mass increased, indicating that during the life history, the species shifts from predominant asexual reproduction to predominant sexual reproduction. This may be favourable for the species to colonize larger area, and to spread and persist at a meta_population level. Correlation analyses showed that sexual reproduction was inversely related to growth and asexual reproduction. However, it is difficult to determine the relationship between asexual reproduction and growth possibly because of the varied function of the corms of the species in different life history stages.展开更多
The paper compared the differences between above ground and underground biomass of four types of plants.The heavy metals(Cu,Zn,Cd,Cr,Pb,As,Hg)and nutrients(TN,TP)content in tissues of four maturity plants were detecte...The paper compared the differences between above ground and underground biomass of four types of plants.The heavy metals(Cu,Zn,Cd,Cr,Pb,As,Hg)and nutrients(TN,TP)content in tissues of four maturity plants were detected,and their enrichment coefficient and transfer coefficient were calculated.The results showed that Suaeda salsa had the largest concentrated capacity on Cu,Zn,Pb,As and Phragmites australis was larger on the Cd,Hg than other plants.Considering the purification of four plants,the effect on the restoration of heavy metal pollution was better if we harvested Phragmites australis and Suaeda salsa.Four plants had a larger difference in absorption capacity of nitrogen and smaller absorption of phosphorus.Phosphorus uptake was significantly smaller than nitrogen.Harvesting Phragmites australis and Suaeda salsa can reduce total nitrogen and phosphorus content of the wetland,while harvesting Spartina alterniflora and Typha orientalis can reduce total phosphorus content.展开更多
The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by co...The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.展开更多
Characteristics and tidal flat trends of soil organic matter (SOM) turnover were studied for the Chongmingdongtan Salt Marsh in the Yangtze River estuary, based on analyses of stable carbon isotope composition (δ^...Characteristics and tidal flat trends of soil organic matter (SOM) turnover were studied for the Chongmingdongtan Salt Marsh in the Yangtze River estuary, based on analyses of stable carbon isotope composition (δ^13C), grain sizes and contents of particulate organic carbon (POC), total nitrogen (TN) and inorganic carbon (TIC) for three cores excavated from high tidal flat, middle tidal flat and bare flat. Results demonstrate that correlations between soil POC contents and δ^13C values of the salt marsh cores were similar to those between soil organic carbon (SOC) contents and δ^13C values of the upper soil layers of mountainous soil profiles with different altitudes. SOM of salt marsh was generally younger than 100 years, and originated mainly from topsoil erosions in catchments of the Yangtze River. Correlations of TN content with C/N ratio, POC content with TIC content and POC content with δ^13C values for the cores suggest that turnover degrees of SOM from the salt marsh are overall low, and trends of SOM turnover are clear from the bare flat to the high tidal flat. Bare flat samples show characteristics of original sediments, with minor SOM turnover. Turnover processes of SOM have occurred and are discernable in the high and middle tidal flats, and the mixing degrees of SOM compartments with different turnover rates increase with evolution of the muddy tidal flat. The exclusive strata structure of alternate muddy laminae and silty laminae originated from dynamic depositional processes on muddy tidal flat was a great obstacle to vertical migration of dissolved materials, and SOM turnover was then constrained. The muddy tidal flat processes exerted direct influences on sequestration and turnover of SOM in the salt marsh, and had great constraints on the spatial and temporal characteristics of SOM turnover of the Chongmingdongtan Salt Marsh in the Yangtze River estuary.展开更多
During the past century,natural and human modifications of environmental systems have greatly accelerated coastal salt marsh deterioration and shoreline retreat in many regions worldwide. Field investigation,profile a...During the past century,natural and human modifications of environmental systems have greatly accelerated coastal salt marsh deterioration and shoreline retreat in many regions worldwide. Field investigation,profile analysis,geographical information analysis,and remote sensing were employed in combination to study the effect of sediment on Spartina alterniflora salt marshes of the coast in Jiangsu Province,East China. The results indicated that the propagation of Spartina alterniflora salt marshes was closely related to regional sediment conditions,especially the supply of fine-grained materials. Additionally,because of the dense and high grass in Spartina alterniflora salt marshes,wave energy and tidal currents were baffled and weaker than those of the adjacent,unvegetated mud flats. Fine sediment was hardly resuspended under the low energy conditions in the Spartina alterniflora salt marshes.展开更多
Salt marshes are research hotspots of the carbon cycle in coastal zones because large amounts of atmospheric carbon dioxide is fi xed by salt marshes vegetation and stored in its biomass and soil.Dissolved organic car...Salt marshes are research hotspots of the carbon cycle in coastal zones because large amounts of atmospheric carbon dioxide is fi xed by salt marshes vegetation and stored in its biomass and soil.Dissolved organic carbon(DOC)in submarine groundwater(well water and pore water)in salt marshes plays an important role in advective exchange between the salt marshes and coastal waters.However,the molecular characteristics of DOC in salt marsh groundwater are poorly understood because of the complex DOC structures and hydrodynamic process.In this study,fl uorescent components and refractory DOC(RDOC)in submarine groundwater from a salt marsh(Chongming Island,China)and adjacent coastal water were characterized by fl uorescence spectroscopy and nuclear magnetic resonance spectroscopy.The fl uorescent components identifi ed by parallel factor analysis indicated that humic-like substances dominated the chromophoric dissolved organic matter in the submarine groundwater.The chromophoric dissolved organic matter and dissolved organic matter in the submarine groundwater had non-conservative behaviors because of additions from terrestrial humic substances.The nuclear magnetic resonance spectra indicated that bioactive substances(carbohydrates)contributed only 13.2%-14.8%of the dissolved organic matter in the submarine groundwater but carboxyl-rich alicyclic molecules(CRAMs),the main components of RDOC,contributed 64.5%of the dissolved organic matter.Carbohydrates and CRAMs contributed 16.4%and 61.7%of the dissolved organic matter in the coastal water,similar to the contributions for submarine groundwater.The DOC concentration in submarine groundwater was 386±294μmol/L,which was signifi cantly higher than that in coastal water(91±19μmol/L).The high DOC concentrations and>60%relative RDOC content suggested that submarine groundwater may be an important source of RDOC to coastal seawater.This information will be helpful for estimating the climate eff ects of salt marsh blue carbon.展开更多
To obtain information on food web structure in salt marshes of the Changjiang (Yangtze) River Estuary, the ( δ3C and δ15N values of primary producers and consumers were determined. The mean δ13C values of 31 d...To obtain information on food web structure in salt marshes of the Changjiang (Yangtze) River Estuary, the ( δ3C and δ15N values of primary producers and consumers were determined. The mean δ13C values of 31 dominant consumers ranged from -23.13‰ to -14.37‰. Except for several species ( Eriocheir sinensis, Sinonovacula constricta and Potamocorbula ustulata), consumers had interme- diate δ13C values between those of benthic microalgae and Spartina alterniflora. The mean δ15N values of 31 dominant consumers varied between 6.87‰ and 13.33‰, which indicate three trophic levels in salt marshes of the Changjiang River Estuary. A total of 18 macroinvertebrates species and four fish species represented primary consumers with trophic levels ranging from 2.0 to 2.7. Secondary consumers included two maeroinvertebrates and seven fishes with trophic levels varying between 3.0 and 3.9. The consumers were divided into three trophic guilds, i.e., detritivorous/algae feeders, omnivores and carnivores. The detrital food chain was the main energy flow pathway in the salt marsh food web of the Changjiang River Estuary, and the marsh vascular plants were at least as equally important as microphytobenthos for secondary production. The important trophic function of the salt marsh habitats in the estuary is revealed.展开更多
The effects of nitrogen (N) addition on microbial biomass, bacterial abundance, and community composition in sediment colonized by Suaeda heteroptera were examined by chloroform fumigation extraction method, real-ti...The effects of nitrogen (N) addition on microbial biomass, bacterial abundance, and community composition in sediment colonized by Suaeda heteroptera were examined by chloroform fumigation extraction method, real-time quantitative polymerase chain reaction, and denaturing gradient gel electrophoresis (DGGE) in a salt marsh located in Shuangtai Estuary, China. The sediment samples were collected from plots treated with different amounts of a single N fertilizer (urea supplied at 0.1, 0.2, 0.4 and 0.8 g/kg (nitrogen content in sediment) and different forms of N fertilizers (urea, (NH4)2SO4, and NH4NO3, each supplied at 0.2 g/kg (calculated by nitrogen). The fertilizers were applied 1-4 times during the plant-growing season in May, luly, August, and September of 2013. Untreated plots were included as a control. The results showed that both the amount and form of N positively influenced microbial biomass carbon, microbial biomass nitrogen, and bacterial abundance. The DGGE profiles revealed that the bacterial community composition was also affected by the amount and form of N. Thus, our findings indicate that short-term N amendment increases microbial biomass and bacterial abundance, and alters the structure of bacterial community.展开更多
In western Songnen Plain of China, the saline-alkaline degree of water bodies is high in salt marsh wetlands. Generally, pH is above 8.0, and the hydrochemical types belong to HCO3 2?-Na+. Through analysis on the basi...In western Songnen Plain of China, the saline-alkaline degree of water bodies is high in salt marsh wetlands. Generally, pH is above 8.0, and the hydrochemical types belong to HCO3 2?-Na+. Through analysis on the basic saline variables such as CO3 2?, HCO3 2?, Cl?, Ca2+, Mg2+, SO4 2?, Na+, and the derivative variables such as SAR, SDR, RSC, SSP, the relationships between different variables are found, and the discriminant equations are established to identify different saline-alkaline water bodies by using principal component analysis.展开更多
The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt m...The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt marsh.Since the exotic species Spartina alterniflora(S. alterniflora) was introduced in 1995, a rapid expansion has occurred at Chongming Dongtan Nature Reserve(CDNR) in the Changjiang(Yangtze) River Estuary, China.Several important vegetation-environment factors including soil elevation, tidal channels density(TCD),vegetation classification and fractional vegetation cover(FVC) were extracted by remote sensing method combined with field measurement. To ignore the details in interaction between biological and physical process,the relationship between them was discussed at a large scale of the whole saltmarsh. The results showed that Scirpus mariqueter(S. mariqueter) can endure the greatest elevation variance with 0.33 m throughout the marsh in CDNR. But it is dominant in the area less than 2.5 m with the occurrence frequency reaching 98%. S. alterniflora has usually been found on the most elevated soils higher than 3.5 m but has a narrow spatial distribution. The rapid decrease of S. mariqueter can be explained by stronger competitive capacity of S. alterniflora on the high tidal flat. FVC increases with elevation which shows significant correlation with elevation(r=0.30, p〈0.001). But the frequency distribution of FVC indicates that vegetation is not well developed on both elevated banks near tidal channels from the whole scale mainly due to tidal channel lateral swing and human activities. The significant negative correlation(r=–0.20, p〈0.001) was found between FVC and TCD, which shows vegetation is restricted to grow in higher TCD area corresponding to lower elevation mainly occupied by S. mariqueter communities. The maximum occurrence frequency of this species reaches to 97% at the salt marsh with TCD more than 8 m/m2.展开更多
Between April 2002 and April 2003,in situ measurements of water depth,current velocity and suspended sediment content were carried out in edge region of East Chongming salt marsh and neighboring bald flat in the Chang...Between April 2002 and April 2003,in situ measurements of water depth,current velocity and suspended sediment content were carried out in edge region of East Chongming salt marsh and neighboring bald flat in the Changjiang (Yangtze) Estuary under different weather conditions.Cross-shore suspended sediment flux was calculated and analyzed.The results show that under calm weather conditions,the current velocity process in bald field and salt marsh area varied differently during semidiurnal tidal cycles.Owing to current velocity asymmetry,mean SSC during flood tide phase was 1.8 times higher than that of ebb tide phase.As a result,net onshore sediment flux controlled cross-shore suspended sediment transport process and salt marsh pioneer zone was generally accreting.There was significant positive correlation between total sediment flux and quartic power of maximum water depth.It indicates that tidal ranges dominate suspended sediment transport and sedimentation process in the salt marsh pioneer zone under the calm weather condition.The sedimentation rate on the adjacent mudflat was higher than the salt marsh,which induced stable accreting of salt marsh towards the sea.The wind events enhanced SSC and current velocity during the semidiurnal tides.And the remarkable onshore net sediment flux could occur on the high marsh and mudflat close to the marsh fringe during the short period under the rough weather condition.展开更多
Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nit...Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow(Huanghe) River Delta, plant samples were collected from two typical salt marshes(Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis(P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences(P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Pragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.展开更多
Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native(Suaeda salsa) and invasive(Spartina alterniflora) salt...Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native(Suaeda salsa) and invasive(Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon(SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents(g/kg) and stocks(kg/m^2) were significantly increased(P < 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer(0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios(Ln RR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase(2–4 years in this study) due to the negative Ln RR values, especially for 20–60 cm depth. And the SOCD in surface layer(0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer(Adjusted R^2 = 0.43, P < 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.展开更多
Fish communities in a (third-order) intertidal creek in Dongtan marsh in the Changjiang (Yangtze) River estuary were investigated seasonally for one year. A total of 1 996 fish specimens (10 967.8 g) comprising ...Fish communities in a (third-order) intertidal creek in Dongtan marsh in the Changjiang (Yangtze) River estuary were investigated seasonally for one year. A total of 1 996 fish specimens (10 967.8 g) comprising 26 species and 15 families were collected. Abundances of fish communities in the intertidal salt marsh creek were primarily dominated by Boleophthalmus pectinirostris (19.8%), Collichthys lucidus (18.6%), Periophthalmus magnuspinnatus (18.2%), Liza haematocheilus (17.9%), and secondarily by Mugilogobius abel (8.5%), L. carinatus (7.2%), Odontamblyopus lacepedii (4.3%), and Acanthogobius ommaturus (3.9%); another 18 species were present only occasionally. Non-MDS ordination and SIMPER analysis indicated that there were two fish communities in the intertidal salt marsh creek. In spring, the communities were dominated by B. pectinirostris, P. magnuspinnatus, C. lucidus and M. abei; in summer, autumn, and winter by L. haematocheilus, L. carinatus, A. ommaturus and O. lacepedii. Some species showed strong habitat selection; L. carinatus and P magnuspinnatus were distributed mainly in the upper and middle creek, while B. pectinirostris, M. abei and O. lacepedii inhabited the middle and lower creek. The study indicated that the salt marshes of the Changjiang River estuary are an important nursery and feeding habitat for many fishes and should be protected.展开更多
Coastal wetlands are the most productive ecosystems worldwide and can provide important ecosystem services,yet the characteristics of microbial community within these systems remain poorly understood.Microbial communi...Coastal wetlands are the most productive ecosystems worldwide and can provide important ecosystem services,yet the characteristics of microbial community within these systems remain poorly understood.Microbial community of salt marsh vegetation and the associated soil physio-chemical properties were investigated in this study.Three typical Suaeda australis,Phragmites australis,Spartina alterniflora wetlands,and non-vegetated bare mudflats in the Zhoushan Islands were studied to advance the understanding of the characteristics of soil bacterial communities in coastal wetlands.Results showed that the bare mudflats exhibited high pH value and soil moisture content compared with the vegetated samples.In different vegetation types,the organic matter content,total nitrogen,and total potassium content decreased in the order:S.alterniflora wetland>P.australis wetland>S.australis wetland,and there was no obvious difference in total phosphorous content.The halophytes could decrease soil salinity compared with bare mudflats.Proteobacteria,Nitrospinae,Bacteroidetes,Acidobacteria,and Nitrospirae were the predominant level across all samples.Functional prediction showed that SPA-covered soil might play vital roles in sulphur cycling,while SUA and PHR covered soils were involved in nitrogen cycling.This study could provide the first insight into the microbial community of this study area and contribute to a better understanding of vegetation microbiota and bioremediation in coastal wetland ecosystem.展开更多
Large-scaled reclamation modifies the coastal environment dramatically while accelerating the disappearance of salt marshes,which causes the degradation of the coastal ecosystem and the biodiversity function.In this s...Large-scaled reclamation modifies the coastal environment dramatically while accelerating the disappearance of salt marshes,which causes the degradation of the coastal ecosystem and the biodiversity function.In this study,we explored the changes of tidal flat and salt marsh coverage in a small-scale tidal flat with an area of ~160 000 m^2 in the plain coast of Jiangsu Province,China.Human activities(e.g.,the construction of dikes) are a crucial contributor that benefits for the tidal flat accretions and the following changes of salt marsh coverage.Located in the front of the man-made "concave coastline",the study area is suitable for sediment accretion after the dike construction in the end of 2006.On the basis of the annual tidal surface elevation survey from 2007 to 2012,the sedimentation rates in the human influenced tidal flat varied from a few centimeters per year to 23 cm/a.The study area experienced a rapid accretion in the tidal flat and the expansion of the salt marsh,with the formation of a longshore bar,and a subsequent decline of the salt marsh.Breaking waves during the flooding tide brought much sediment from the adjacent tidal flat to the study area,which caused burial and degeneration of the salt marsh.The vertical grain size changes within a 66 cm long core in the study area also demonstrated the above changes in the tidal environment.This study indicates that the responses of small-scale tidal flat changes to reclamation are significant,and the rational reclamation would benefit for the new salt marsh formation in front of the dikes.Further research about the evolution of small scale tidal flat as well as the spatial planning of the polder dike should be strengthened for the purpose to maintain a healthier coastal environment.展开更多
Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temp...Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temporal and spatial variation characteristics of erosion and deposition in the front edge of salt marsh wetland were analyzed.The influence of sea level rise on the annual change of salt marsh area was analyzed.The characteristics of flow and sediment movement in salt marsh and the causes of erosion and deposition in front of salt marsh were analyzed.The results showed that:(1)During 2005-2007,the sea level was relatively low,and Spartina alterniflora in salt marsh expanded to the sea.Since 2007,the front edge of salt marsh wetland has coexisted with erosion and deposition.From 2008 to 2010,the front edge of salt marsh wetland once again showed a trend of comprehensive deposition to the sea side.From 2010 to 2012,the erosion of salt marsh wetland was serious.From 2012 to 2020,the front edge of salt marsh wetland in the range of 9 km south of Xinyang estuary was eroded.(2)The correlation analysis was carried out between the area of salt marsh wetland and sea level rise.Spartina alterniflora is easily affected by sea level change,owing to it having a low ecological niche.With the rise of sea level,the area of salt marsh has been decreasing since 2013.(3)In the front sea area of salt marsh wetland,the maximum velocity of the ebb and flood can reach the threshold velocity during the spring tide.The sediment starts to move at water depth of 10 m under wave actions.Owing to wave stirs up sediment and current transports the sediment,resuspended sediment causes the erosion of marsh-edge scarps.展开更多
Based on plant specimen data,sediment samples,photos,and sketches from 45 coastal cross-sections,and materials from two recent countrywide comprehensive investigations on Chinese coasts and is-lands,this paper deals w...Based on plant specimen data,sediment samples,photos,and sketches from 45 coastal cross-sections,and materials from two recent countrywide comprehensive investigations on Chinese coasts and is-lands,this paper deals with China’s vegetative tidal-flats:salt marshes and mangrove swamps.Thereare now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about30% of the mud-coast area of the country and distribute between 18°N(Southem Hainan Island)and41°N(Liaodong Bay).Over the past 45 years.about 1750000 acres of salt marshes and 49400 acres ofmangrove swamps have been reclaimed.The2.0×10~9 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats,the soil basis of coastal helophytes.Different climates result inthe diversity of vegetation.The 3~8m tidal range favors intertidal zone development.Of over 20plant species in the salt marshes,native Suaeda salsa,Phragmites australis,Aeluropus littoralis,Zoysiamaerostachys,Imperata cylindrica and展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U2040204)the Jiangsu Provincial Natural Science Foundation of China(Grants No.BK2020020,BK20220979,and BK20220993)the Fundamental Research Funds for the Central University(Grant No.B220202057).
文摘Salt marshes are among the most important coastal wetlands and provide critical ecological services,including climate regulation,biodiversity maintenance,and blue carbon sequestration.However,most salt marshes worldwide are shrinking,owing to the effects of natural and human factors,such as climate change and artificial reclamation.Therefore,it is essential to understand the decline in the morphological processes of salt marshes,and accordingly,the likely evolution of these marshes,in order to enable measures to be taken to mitigate this decline.To this end,this study presented an extensive systematic review of the current state of morphological models and their application to salt marshes.The emergence of process-based(PB)and data-driven(DD)models has contributed to the development of morphological models.In morphodynamic simulations in PB models,multiple physical and biological factors(e.g.,the hydrodynamics of water bodies,sediment erosion,sediment deposition,and vegetation type)have been considered.The systematic review revealed that PB models have been extended to a broader interdisciplinary field.Further,most DD models are based on remote sensing database for the prediction of morphological characteristics with latent uncertainty.Compared to DD models,PB models are more transparent but can be complex and require a lot of computational power.Therefore,to make up for the shortcomings of each model,future studies could couple PB with DD models that consider vegetation,microorganisms,and benthic animals together to simulate or predict the biogeomorphology of salt marsh systems.Nevertheless,this review found that there is a lack of unified metrics to evaluate model performance,so it is important to define clear objectives,use multiple metrics,compare multiple models,incorporate uncertainty,and involve experts in the field to provide guidance in the further study.
文摘Scirpus mariqueter Tang et Zhang is a typical pioneer plant colonizing the bare beaches of the Yangtse River estuary. To explore the life history strategy of the species with reference to environmental physical stress, the biomass allocations to different plant components and some related morphological parameters were examined along an elevational gradient within a salt marsh. Authors found that S. mariqueter performed best at medium elevation within the marsh, with relatively high density of shoot and individual ramet dry mass. Biomass allocation to corm was the highest at low elevations, and the least at high elevations, suggesting that a conservative strategy was adopted by the species to cope with the harsh physical conditions at the low elevation. The investment in rhizome decreased from low to high elevations, while the proportion of inflorescence mass increased, indicating that during the life history, the species shifts from predominant asexual reproduction to predominant sexual reproduction. This may be favourable for the species to colonize larger area, and to spread and persist at a meta_population level. Correlation analyses showed that sexual reproduction was inversely related to growth and asexual reproduction. However, it is difficult to determine the relationship between asexual reproduction and growth possibly because of the varied function of the corms of the species in different life history stages.
基金Supported by Oceanic Scientific Research Special Fund for Public Welfare Industry(200905009-5,200805070)
文摘The paper compared the differences between above ground and underground biomass of four types of plants.The heavy metals(Cu,Zn,Cd,Cr,Pb,As,Hg)and nutrients(TN,TP)content in tissues of four maturity plants were detected,and their enrichment coefficient and transfer coefficient were calculated.The results showed that Suaeda salsa had the largest concentrated capacity on Cu,Zn,Pb,As and Phragmites australis was larger on the Cd,Hg than other plants.Considering the purification of four plants,the effect on the restoration of heavy metal pollution was better if we harvested Phragmites australis and Suaeda salsa.Four plants had a larger difference in absorption capacity of nitrogen and smaller absorption of phosphorus.Phosphorus uptake was significantly smaller than nitrogen.Harvesting Phragmites australis and Suaeda salsa can reduce total nitrogen and phosphorus content of the wetland,while harvesting Spartina alterniflora and Typha orientalis can reduce total phosphorus content.
基金Project supported by the National Natural Science Foundation of China (Nos.30370235 and 30670330)Science and Technology Commission of Shanghai (No.04DZ19304)Ministry of Education of China (No.105063)
文摘The structure and diversity of the bacterial communities in rhizosphere soils of native Phragmites australis and Scirpus rnariqueter and alien Spartina alterniflora in the Yangtze River Estuary were investigated by constructing 16S ribosomal DNA (rDNA) clone libraries. The bacterial diversity was quantified by placing the clones into operational taxonomic unit (OTU) groups at the level of sequence similarity of 〉 97%. Phylogenetic analysis of the resulting 398 clone sequences indicated a high diversity of bacteria in the rhizosphere soils of these plants. The members of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria of the phylum Proteobacteria were the most abundant in rhizobacteria. Chao 1 nonpaxametric diversity estimator coupled with the reciprocal of Simpson's index (l/D) was applied to sequence data obtained from each library to evaluate total sequence diversity and quantitatively compare the level of dominance. The results showed that Phragmites, Scirpus, and Spartina rhizosphere soils contained 200, 668, and 382 OTUs, respectively. The bacterial communities in the Spartina and Phragraites rhizosphere soils displayed species dominance revealed by 1/D, whereas the bacterial community in Scirpus rhizosphere soil had uniform distributions of species abundance. Overall, analysis of 16S rDNA clone libraries from the rhizosphere soils indicates that the changes in bacterial composition may occur concomitantly with the shift of species composition in plant communities.
基金Foundation: National Natural Science foundation of China, No.40202032 National 973 Project, No.2002CB412403 Program for Young Teachers in Universities in Shanghai, No.2000QN 14 Acknowledgments: We are grateful to the members taking part in a field survey supervised by Professor Zhang Jing for their kind helps in sampling the studied cores in this paper. Thanks are also extended to Mr. Wu Runming and Mr. Zhang Guosen for their instructions and helps in laboratory analyses.
文摘Characteristics and tidal flat trends of soil organic matter (SOM) turnover were studied for the Chongmingdongtan Salt Marsh in the Yangtze River estuary, based on analyses of stable carbon isotope composition (δ^13C), grain sizes and contents of particulate organic carbon (POC), total nitrogen (TN) and inorganic carbon (TIC) for three cores excavated from high tidal flat, middle tidal flat and bare flat. Results demonstrate that correlations between soil POC contents and δ^13C values of the salt marsh cores were similar to those between soil organic carbon (SOC) contents and δ^13C values of the upper soil layers of mountainous soil profiles with different altitudes. SOM of salt marsh was generally younger than 100 years, and originated mainly from topsoil erosions in catchments of the Yangtze River. Correlations of TN content with C/N ratio, POC content with TIC content and POC content with δ^13C values for the cores suggest that turnover degrees of SOM from the salt marsh are overall low, and trends of SOM turnover are clear from the bare flat to the high tidal flat. Bare flat samples show characteristics of original sediments, with minor SOM turnover. Turnover processes of SOM have occurred and are discernable in the high and middle tidal flats, and the mixing degrees of SOM compartments with different turnover rates increase with evolution of the muddy tidal flat. The exclusive strata structure of alternate muddy laminae and silty laminae originated from dynamic depositional processes on muddy tidal flat was a great obstacle to vertical migration of dissolved materials, and SOM turnover was then constrained. The muddy tidal flat processes exerted direct influences on sequestration and turnover of SOM in the salt marsh, and had great constraints on the spatial and temporal characteristics of SOM turnover of the Chongmingdongtan Salt Marsh in the Yangtze River estuary.
基金the National Natural Science Foundation of China (Nos.40401059 and 40576040).
文摘During the past century,natural and human modifications of environmental systems have greatly accelerated coastal salt marsh deterioration and shoreline retreat in many regions worldwide. Field investigation,profile analysis,geographical information analysis,and remote sensing were employed in combination to study the effect of sediment on Spartina alterniflora salt marshes of the coast in Jiangsu Province,East China. The results indicated that the propagation of Spartina alterniflora salt marshes was closely related to regional sediment conditions,especially the supply of fine-grained materials. Additionally,because of the dense and high grass in Spartina alterniflora salt marshes,wave energy and tidal currents were baffled and weaker than those of the adjacent,unvegetated mud flats. Fine sediment was hardly resuspended under the low energy conditions in the Spartina alterniflora salt marshes.
基金Supported by the Natural Science Foundation of Shanghai(No.19ZR1415300)the Zhejiang Provincial Natural Science Foundation of China(No.LQ21D060005)the China Postdoctoral Science Foundation(No.2020M681931)。
文摘Salt marshes are research hotspots of the carbon cycle in coastal zones because large amounts of atmospheric carbon dioxide is fi xed by salt marshes vegetation and stored in its biomass and soil.Dissolved organic carbon(DOC)in submarine groundwater(well water and pore water)in salt marshes plays an important role in advective exchange between the salt marshes and coastal waters.However,the molecular characteristics of DOC in salt marsh groundwater are poorly understood because of the complex DOC structures and hydrodynamic process.In this study,fl uorescent components and refractory DOC(RDOC)in submarine groundwater from a salt marsh(Chongming Island,China)and adjacent coastal water were characterized by fl uorescence spectroscopy and nuclear magnetic resonance spectroscopy.The fl uorescent components identifi ed by parallel factor analysis indicated that humic-like substances dominated the chromophoric dissolved organic matter in the submarine groundwater.The chromophoric dissolved organic matter and dissolved organic matter in the submarine groundwater had non-conservative behaviors because of additions from terrestrial humic substances.The nuclear magnetic resonance spectra indicated that bioactive substances(carbohydrates)contributed only 13.2%-14.8%of the dissolved organic matter in the submarine groundwater but carboxyl-rich alicyclic molecules(CRAMs),the main components of RDOC,contributed 64.5%of the dissolved organic matter.Carbohydrates and CRAMs contributed 16.4%and 61.7%of the dissolved organic matter in the coastal water,similar to the contributions for submarine groundwater.The DOC concentration in submarine groundwater was 386±294μmol/L,which was signifi cantly higher than that in coastal water(91±19μmol/L).The high DOC concentrations and>60%relative RDOC content suggested that submarine groundwater may be an important source of RDOC to coastal seawater.This information will be helpful for estimating the climate eff ects of salt marsh blue carbon.
基金The Science and Technology Department of Shanghai under contract Nos 08231200705, 07DZ12038 and 072312032the National Natural Science Foundation of China under contract No. 40876044
文摘To obtain information on food web structure in salt marshes of the Changjiang (Yangtze) River Estuary, the ( δ3C and δ15N values of primary producers and consumers were determined. The mean δ13C values of 31 dominant consumers ranged from -23.13‰ to -14.37‰. Except for several species ( Eriocheir sinensis, Sinonovacula constricta and Potamocorbula ustulata), consumers had interme- diate δ13C values between those of benthic microalgae and Spartina alterniflora. The mean δ15N values of 31 dominant consumers varied between 6.87‰ and 13.33‰, which indicate three trophic levels in salt marshes of the Changjiang River Estuary. A total of 18 macroinvertebrates species and four fish species represented primary consumers with trophic levels ranging from 2.0 to 2.7. Secondary consumers included two maeroinvertebrates and seven fishes with trophic levels varying between 3.0 and 3.9. The consumers were divided into three trophic guilds, i.e., detritivorous/algae feeders, omnivores and carnivores. The detrital food chain was the main energy flow pathway in the salt marsh food web of the Changjiang River Estuary, and the marsh vascular plants were at least as equally important as microphytobenthos for secondary production. The important trophic function of the salt marsh habitats in the estuary is revealed.
基金The National Natural Science Foundation of China under contract No.41171389the Public Science and Technology Research Funds Projects of Ocean under contract No.201305043Program for Liaoning Excellent Talents in University under contract No.LR2013035
文摘The effects of nitrogen (N) addition on microbial biomass, bacterial abundance, and community composition in sediment colonized by Suaeda heteroptera were examined by chloroform fumigation extraction method, real-time quantitative polymerase chain reaction, and denaturing gradient gel electrophoresis (DGGE) in a salt marsh located in Shuangtai Estuary, China. The sediment samples were collected from plots treated with different amounts of a single N fertilizer (urea supplied at 0.1, 0.2, 0.4 and 0.8 g/kg (nitrogen content in sediment) and different forms of N fertilizers (urea, (NH4)2SO4, and NH4NO3, each supplied at 0.2 g/kg (calculated by nitrogen). The fertilizers were applied 1-4 times during the plant-growing season in May, luly, August, and September of 2013. Untreated plots were included as a control. The results showed that both the amount and form of N positively influenced microbial biomass carbon, microbial biomass nitrogen, and bacterial abundance. The DGGE profiles revealed that the bacterial community composition was also affected by the amount and form of N. Thus, our findings indicate that short-term N amendment increases microbial biomass and bacterial abundance, and alters the structure of bacterial community.
基金Project of the Limnic Foundation of the Chinese Academy of Sciences, ZKHZ-2-3
文摘In western Songnen Plain of China, the saline-alkaline degree of water bodies is high in salt marsh wetlands. Generally, pH is above 8.0, and the hydrochemical types belong to HCO3 2?-Na+. Through analysis on the basic saline variables such as CO3 2?, HCO3 2?, Cl?, Ca2+, Mg2+, SO4 2?, Na+, and the derivative variables such as SAR, SDR, RSC, SSP, the relationships between different variables are found, and the discriminant equations are established to identify different saline-alkaline water bodies by using principal component analysis.
基金Program Strategic Scientific Alliances between China and the Netherlands under contract No.2008DFB90240Open Research Fund Program for State Key Laboratory of Estuarine and Coastal Research under contract No.SKLEC201207Open Research Fund Program for Shandong Province Key Laboratory of Marine Ecology Environment and Disaster Prevention under contract No.2012011
文摘The analysis of vegetation-environment relationships has always been a study hotspot in ecology. A number of biotic, hydrologic and edaphic factors have great influence on the distribution of macrophytes within salt marsh.Since the exotic species Spartina alterniflora(S. alterniflora) was introduced in 1995, a rapid expansion has occurred at Chongming Dongtan Nature Reserve(CDNR) in the Changjiang(Yangtze) River Estuary, China.Several important vegetation-environment factors including soil elevation, tidal channels density(TCD),vegetation classification and fractional vegetation cover(FVC) were extracted by remote sensing method combined with field measurement. To ignore the details in interaction between biological and physical process,the relationship between them was discussed at a large scale of the whole saltmarsh. The results showed that Scirpus mariqueter(S. mariqueter) can endure the greatest elevation variance with 0.33 m throughout the marsh in CDNR. But it is dominant in the area less than 2.5 m with the occurrence frequency reaching 98%. S. alterniflora has usually been found on the most elevated soils higher than 3.5 m but has a narrow spatial distribution. The rapid decrease of S. mariqueter can be explained by stronger competitive capacity of S. alterniflora on the high tidal flat. FVC increases with elevation which shows significant correlation with elevation(r=0.30, p〈0.001). But the frequency distribution of FVC indicates that vegetation is not well developed on both elevated banks near tidal channels from the whole scale mainly due to tidal channel lateral swing and human activities. The significant negative correlation(r=–0.20, p〈0.001) was found between FVC and TCD, which shows vegetation is restricted to grow in higher TCD area corresponding to lower elevation mainly occupied by S. mariqueter communities. The maximum occurrence frequency of this species reaches to 97% at the salt marsh with TCD more than 8 m/m2.
基金The National Natural Science Foundation of China under contract Nos 40901010 and 40730526Leading Academic Discipline Project of Shanghai Normal University under contract No.DZL809
文摘Between April 2002 and April 2003,in situ measurements of water depth,current velocity and suspended sediment content were carried out in edge region of East Chongming salt marsh and neighboring bald flat in the Changjiang (Yangtze) Estuary under different weather conditions.Cross-shore suspended sediment flux was calculated and analyzed.The results show that under calm weather conditions,the current velocity process in bald field and salt marsh area varied differently during semidiurnal tidal cycles.Owing to current velocity asymmetry,mean SSC during flood tide phase was 1.8 times higher than that of ebb tide phase.As a result,net onshore sediment flux controlled cross-shore suspended sediment transport process and salt marsh pioneer zone was generally accreting.There was significant positive correlation between total sediment flux and quartic power of maximum water depth.It indicates that tidal ranges dominate suspended sediment transport and sedimentation process in the salt marsh pioneer zone under the calm weather condition.The sedimentation rate on the adjacent mudflat was higher than the salt marsh,which induced stable accreting of salt marsh towards the sea.The wind events enhanced SSC and current velocity during the semidiurnal tides.And the remarkable onshore net sediment flux could occur on the high marsh and mudflat close to the marsh fringe during the short period under the rough weather condition.
基金Under the auspices of National Key R&D Program of China(No.2017YFC0505906)National Natural Science Foundation of China(No.51639001,51379012)Interdiscipline Research Funds of Beijing Normal University
文摘Little information is available on biogenic elements(carbon, nitrogen, phosphorus and sulfur) and the ecological stoichiometric characteristics of plants in coastal wetlands. To investigate the contents of carbon, nitrogen, phosphorus and sulfur of plants, and their ecological stoichiometric characteristics in the Yellow(Huanghe) River Delta, plant samples were collected from two typical salt marshes(Suaeda salsa and Phragmites australis wetlands) during the period of from August to October in 2007, and the ratios of C/N, C/P, N/P, C/N/P and C/N/P/S were calculated. Results showed that during the studying period, plant C, N and P were lower than the global average values, and plant N and P were lower than the China's average values. Leaf C and S in Suaeda salsa were significantly lower than those in Phragmites australis(P < 0.05), and leaf N and P in Suaeda salsa and Phragmites australis showed no significant differences(P > 0.05). Average C/N ratios were 23.75 in leaf, 73.36 in stem, 65.67 in root of Suaeda salsa, and 33.77 in leaf, 121.68 in stem, 97.13 in root of Phragmites australis. Average C/N ratios of Suaeda salsa and Phragmites australis were all great than 25, indicating the salt marsh in the Yellow River Delta is an N limitation system. Average C/P ratios were 276.78 in leaf, 709.28 in stem and 1031.32 in root of Suaeda salsa, and 536.94 in leaf, 768.13 in stem and 875.22 in root of Phragmites australis. The average N/P ratios of Suaeda salsa were 12.92 in leaf, 10.77 in stem and 10.91 in root, and the average N/P ratios of Phragmites australis were 16.40 in leaf, 7.40 in stem and 6.92 in root, indicating the Suaeda salsa wetlands were N limited and Phragmites australis wetlands were N limited in August and P limited in October in 2007. The average C/N, C/P and C/N/P ratios in Suaeda salsa and Pragmites australis were higher than the global average values, indicating the lower quality of organic matter provided by wetland plants in the Yellow River delta.
基金Under the auspices of the National Key R&D Program of China(No.2017YFC0505906)the National Natural Science Foundation of China(No.51639001,51379012)the Interdiscipline Research Funds of Beijing Normal University
文摘Plant invasion alters the fundamental structure and function of native ecosystems by affecting the biogeochemical pools and fluxes of materials and energy. Native(Suaeda salsa) and invasive(Spartina alterniflora) salt marshes were selected to study the effects of Spartina alterniflora invasion on soil organic carbon(SOC) contents and stocks in the Yellow River Delta. Results showed that the SOC contents(g/kg) and stocks(kg/m^2) were significantly increased(P < 0.05) after Spartina alterniflora invasion of seven years, especially for the surface soil layer(0–20 cm). The SOC contents exhibited an even distribution along the soil profiles in native salt marshes, while the SOC contents were gradually decreased with depth after Spartina alterniflora invasion of seven years. The natural ln response ratios(Ln RR) were applied to identify the effects of short-term Spartina alterniflora invasion on the SOC stocks. We also found that Spartina alterniflora invasion might cause soil organic carbon losses in a short-term phase(2–4 years in this study) due to the negative Ln RR values, especially for 20–60 cm depth. And the SOCD in surface layer(0–20 cm) do not increase linearly with the invasive age. Spearman correlation analysis revealed that silt + clay content was exponentially related with SOC in surface layer(Adjusted R^2 = 0.43, P < 0.001), suggesting that soil texture could play a key role in SOC sequestration of coastal salt marshes.
基金Supported by Special Research Fund for the National Non-profit Institutes (East China Sea Fisheries Research Institute) (No.2007M03) and Administration Bureau of Virescence of Shanghai Municipality
文摘Fish communities in a (third-order) intertidal creek in Dongtan marsh in the Changjiang (Yangtze) River estuary were investigated seasonally for one year. A total of 1 996 fish specimens (10 967.8 g) comprising 26 species and 15 families were collected. Abundances of fish communities in the intertidal salt marsh creek were primarily dominated by Boleophthalmus pectinirostris (19.8%), Collichthys lucidus (18.6%), Periophthalmus magnuspinnatus (18.2%), Liza haematocheilus (17.9%), and secondarily by Mugilogobius abel (8.5%), L. carinatus (7.2%), Odontamblyopus lacepedii (4.3%), and Acanthogobius ommaturus (3.9%); another 18 species were present only occasionally. Non-MDS ordination and SIMPER analysis indicated that there were two fish communities in the intertidal salt marsh creek. In spring, the communities were dominated by B. pectinirostris, P. magnuspinnatus, C. lucidus and M. abei; in summer, autumn, and winter by L. haematocheilus, L. carinatus, A. ommaturus and O. lacepedii. Some species showed strong habitat selection; L. carinatus and P magnuspinnatus were distributed mainly in the upper and middle creek, while B. pectinirostris, M. abei and O. lacepedii inhabited the middle and lower creek. The study indicated that the salt marshes of the Changjiang River estuary are an important nursery and feeding habitat for many fishes and should be protected.
基金supported by the grant from the Postdoctoral Advance Programs of Zhejiang Province and Scientific Project Establishment of Huadong Engineering Corporation Limited(No.KY2020-SD-11).
文摘Coastal wetlands are the most productive ecosystems worldwide and can provide important ecosystem services,yet the characteristics of microbial community within these systems remain poorly understood.Microbial community of salt marsh vegetation and the associated soil physio-chemical properties were investigated in this study.Three typical Suaeda australis,Phragmites australis,Spartina alterniflora wetlands,and non-vegetated bare mudflats in the Zhoushan Islands were studied to advance the understanding of the characteristics of soil bacterial communities in coastal wetlands.Results showed that the bare mudflats exhibited high pH value and soil moisture content compared with the vegetated samples.In different vegetation types,the organic matter content,total nitrogen,and total potassium content decreased in the order:S.alterniflora wetland>P.australis wetland>S.australis wetland,and there was no obvious difference in total phosphorous content.The halophytes could decrease soil salinity compared with bare mudflats.Proteobacteria,Nitrospinae,Bacteroidetes,Acidobacteria,and Nitrospirae were the predominant level across all samples.Functional prediction showed that SPA-covered soil might play vital roles in sulphur cycling,while SUA and PHR covered soils were involved in nitrogen cycling.This study could provide the first insight into the microbial community of this study area and contribute to a better understanding of vegetation microbiota and bioremediation in coastal wetland ecosystem.
基金The National Key Technology Research and Development Program of the Ministry of Science and Technology of China under contract No.2012BAC07B01the National Natural Science Foundation of China under contract Nos 41371024,41230751 and 41071006
文摘Large-scaled reclamation modifies the coastal environment dramatically while accelerating the disappearance of salt marshes,which causes the degradation of the coastal ecosystem and the biodiversity function.In this study,we explored the changes of tidal flat and salt marsh coverage in a small-scale tidal flat with an area of ~160 000 m^2 in the plain coast of Jiangsu Province,China.Human activities(e.g.,the construction of dikes) are a crucial contributor that benefits for the tidal flat accretions and the following changes of salt marsh coverage.Located in the front of the man-made "concave coastline",the study area is suitable for sediment accretion after the dike construction in the end of 2006.On the basis of the annual tidal surface elevation survey from 2007 to 2012,the sedimentation rates in the human influenced tidal flat varied from a few centimeters per year to 23 cm/a.The study area experienced a rapid accretion in the tidal flat and the expansion of the salt marsh,with the formation of a longshore bar,and a subsequent decline of the salt marsh.Breaking waves during the flooding tide brought much sediment from the adjacent tidal flat to the study area,which caused burial and degeneration of the salt marsh.The vertical grain size changes within a 66 cm long core in the study area also demonstrated the above changes in the tidal environment.This study indicates that the responses of small-scale tidal flat changes to reclamation are significant,and the rational reclamation would benefit for the new salt marsh formation in front of the dikes.Further research about the evolution of small scale tidal flat as well as the spatial planning of the polder dike should be strengthened for the purpose to maintain a healthier coastal environment.
基金funded by Jiangsu Ocean University Graduate Research and Practice Innovation Program(KYCX2021-040).
文摘Taking Yancheng Nature Reserve Salt Marsh as the research object,the remote sensing images from 2005 to 2020 were interpreted by using remote sensing and geographic information system technology.In this paper,the temporal and spatial variation characteristics of erosion and deposition in the front edge of salt marsh wetland were analyzed.The influence of sea level rise on the annual change of salt marsh area was analyzed.The characteristics of flow and sediment movement in salt marsh and the causes of erosion and deposition in front of salt marsh were analyzed.The results showed that:(1)During 2005-2007,the sea level was relatively low,and Spartina alterniflora in salt marsh expanded to the sea.Since 2007,the front edge of salt marsh wetland has coexisted with erosion and deposition.From 2008 to 2010,the front edge of salt marsh wetland once again showed a trend of comprehensive deposition to the sea side.From 2010 to 2012,the erosion of salt marsh wetland was serious.From 2012 to 2020,the front edge of salt marsh wetland in the range of 9 km south of Xinyang estuary was eroded.(2)The correlation analysis was carried out between the area of salt marsh wetland and sea level rise.Spartina alterniflora is easily affected by sea level change,owing to it having a low ecological niche.With the rise of sea level,the area of salt marsh has been decreasing since 2013.(3)In the front sea area of salt marsh wetland,the maximum velocity of the ebb and flood can reach the threshold velocity during the spring tide.The sediment starts to move at water depth of 10 m under wave actions.Owing to wave stirs up sediment and current transports the sediment,resuspended sediment causes the erosion of marsh-edge scarps.
基金The project was supported by the NSFC(No.49476281)
文摘Based on plant specimen data,sediment samples,photos,and sketches from 45 coastal cross-sections,and materials from two recent countrywide comprehensive investigations on Chinese coasts and is-lands,this paper deals with China’s vegetative tidal-flats:salt marshes and mangrove swamps.Thereare now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about30% of the mud-coast area of the country and distribute between 18°N(Southem Hainan Island)and41°N(Liaodong Bay).Over the past 45 years.about 1750000 acres of salt marshes and 49400 acres ofmangrove swamps have been reclaimed.The2.0×10~9 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats,the soil basis of coastal helophytes.Different climates result inthe diversity of vegetation.The 3~8m tidal range favors intertidal zone development.Of over 20plant species in the salt marshes,native Suaeda salsa,Phragmites australis,Aeluropus littoralis,Zoysiamaerostachys,Imperata cylindrica and