This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of wat...This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.展开更多
The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hyd...The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hydrocarbon sources, as well as the salt production. But the previous studies are validated in cases and a general view on these studies is scarce. By analyzing and integrating previous studies, the history and structure evolution of Zechstein salts were reviewed in this paper. Seven cycles of Zechstein salt (Na1, Na2, Na3, Na4, Na5, Na6, Na7) with distinct composition and thickness were deposited after a series of marine transgressions and regressions during the Upper Permian. The Na1 (300 m) locally developed in a lagoon environment. The thick Na2 (over 500 m) was widely deposited in the whole basin. The Na3, Na4, Na5, Na6 and Na7 decreased progressively in thickness and distribution. These salts should have been moved as a result of regional tectonics taking place from Triassic to Early Cenozoic, which changes the original distribution of salts, resulting in the formation of different salt structures (pillows and diapirs). Salt movement was more intensive in central and southern parts of the basin forming narrow and widely-distributed salt diapirs, while it was less intensive in the northern parts where salt pillows are the major structure. The salt meadow and saline springs are also present, which are attributed to the salinization of the groundwater. By this study, we review the history and structure development of the Zechstein salt in the NEGB by associating each individual study and figure out the common and regional characters of the salt in this region.展开更多
The paper discusses the distribution of Quaternary sediments, occurrence of saline minerals and phases of neotectonic movements and their manifestations in the Qaidam basin. The formation of four successive lacustrine...The paper discusses the distribution of Quaternary sediments, occurrence of saline minerals and phases of neotectonic movements and their manifestations in the Qaidam basin. The formation of four successive lacustrine terraces in Tertiary anticlinal zones in the western part of the basin was related to the neotectonic movements that took place 100 Ka ago, and the distribution of such terraces discloses, in a way. the evolutionary history of the Quaternary salt lakes. According to the distribution of the terraces coupled with the distribution of Quaternary sediments and features of salt deposition, four periods of Quaternary salt lake evolution in the basin may be distinguished, which correspond to four stages of salt deposition respectively.展开更多
基金The project supported by the National Natural Science Foundation of China
文摘This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.
文摘The Zechstein (Upper Permian) salts are extensively distributed in the Northeast German Basin (NEGB). Their formation and movements have attracted great attention to discovering the accumulation and exploration of hydrocarbon sources, as well as the salt production. But the previous studies are validated in cases and a general view on these studies is scarce. By analyzing and integrating previous studies, the history and structure evolution of Zechstein salts were reviewed in this paper. Seven cycles of Zechstein salt (Na1, Na2, Na3, Na4, Na5, Na6, Na7) with distinct composition and thickness were deposited after a series of marine transgressions and regressions during the Upper Permian. The Na1 (300 m) locally developed in a lagoon environment. The thick Na2 (over 500 m) was widely deposited in the whole basin. The Na3, Na4, Na5, Na6 and Na7 decreased progressively in thickness and distribution. These salts should have been moved as a result of regional tectonics taking place from Triassic to Early Cenozoic, which changes the original distribution of salts, resulting in the formation of different salt structures (pillows and diapirs). Salt movement was more intensive in central and southern parts of the basin forming narrow and widely-distributed salt diapirs, while it was less intensive in the northern parts where salt pillows are the major structure. The salt meadow and saline springs are also present, which are attributed to the salinization of the groundwater. By this study, we review the history and structure development of the Zechstein salt in the NEGB by associating each individual study and figure out the common and regional characters of the salt in this region.
文摘The paper discusses the distribution of Quaternary sediments, occurrence of saline minerals and phases of neotectonic movements and their manifestations in the Qaidam basin. The formation of four successive lacustrine terraces in Tertiary anticlinal zones in the western part of the basin was related to the neotectonic movements that took place 100 Ka ago, and the distribution of such terraces discloses, in a way. the evolutionary history of the Quaternary salt lakes. According to the distribution of the terraces coupled with the distribution of Quaternary sediments and features of salt deposition, four periods of Quaternary salt lake evolution in the basin may be distinguished, which correspond to four stages of salt deposition respectively.