期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Performance of Concrete Subjected to Severe Multiple Actions of Composite Salts Solution under Wet-Dry Cycles and Flexural Loading in Lab 被引量:2
1
作者 陈燕娟 高建明 +1 位作者 TANG Luping SHEN Daman 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期830-837,共8页
Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modul... Several action regimes were employed, namely, those exposed to solutions containing single and/or composite chloride and sulfate salts, and under wet-dry cycles and/or flexural loading. The variations in dynamic modulus of elasticity(Erd values) were monitored, as well as the key factor impacting on the chloride ingress when concrete subjected to multiple action regimes was identified by the method of Grey Relation Analysis(GRA). The changes in micro-structures and mineral products of interior concrete after different action regimes were investigated by means of X-ray diffraction(XRD), mercury intrusion technique(MIP), and scanning electron microscopy(SEM). The test results showed that the cyclic wet-dry accelerated the deterioration of OPC concrete more than the action of 35% flexural loading based on the results of Erd values and the GEA. The analyses from micro-structures could give certain explanations to the change in Erd values under different action regimes. 展开更多
关键词 concrete wet-dry cycles flexural loading composite salts solution grey relation analysis
下载PDF
Effect of salts on earthen materials deterioration after humidity cycling 被引量:3
2
作者 沈云霞 谌文武 +1 位作者 匡静 杜伟飞 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期796-806,共11页
Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipita... Salt weathering leads to destruction of many valuable cultural heritage monuments and porous building material. The present study aims at providing more laboratory evidence for evaluating the effects of salt precipitation on the deterioration process. In view of this, the remoulded soil specimens were mixed with three kinds of salts(i.e., NaCl, Na_2SO_4 and their mixture) with different salt concentrations, and the specimens were kept in environment cabinet for undergoing different wet-dry cycles. After each cycle, the ultrasound velocity measurements were employed to monitor the deterioration process. For the specimens that have suffered three wet-dry cycles, the mechanical properties(i.e. shear strength and compression strength) were determined to evaluate the degree of deterioration. Furthermore, considering the realistic conservation environment of earthen sites, mechanical stability of these specimens against sediment-carrying wind erosion was conducted in a wind tunnel. These experiments results indicate that the overall average velocities of the specimens after the third cycle are significantly lower than those subjected to only one cycle. Ultrasound velocity, mechanical strength and wind erosion rate decrease when salt content increases. However, the internal friction angle increases firstly, and then decreases with the increase in salt content added to the specimens. Na_2SO_4 contributes most of the surface deterioration, while NaCl plays little role in the deterioration. The damage potential of the salt mixture is less obvious and largely dependent on the crystallisation location. 展开更多
关键词 earthen archaeological SITES wet-dry cycles DETERIORATION salt content salt crystallization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部