Histone acetylation is indispensable in the process of crops resisting abiotic stress,which is jointly catalyzed by histone acetyltransferases and deacetylases.However,the mechanism of regulating salt tolerance throug...Histone acetylation is indispensable in the process of crops resisting abiotic stress,which is jointly catalyzed by histone acetyltransferases and deacetylases.However,the mechanism of regulating salt tolerance through histone acetyltransferase GCN5 is still unclear.We revealed that GCN5 can catalyze the acetylation of canonical H3 and H4 lysine residues both in vivo and in vitro in rice.The knockout mutants and RNA interference lines of Os GCN5 exhibited severe growth inhibition and defects in salt tolerance,while the over-expression of Os GCN5 enhanced the salt tolerance of rice seedlings,indicating that Os GCN5 positively regulated the response of rice to salt stress.RNA-seq analysis suggested Os GCN5 may positively regulate the salt tolerance of rice by inhibiting the expression of Os HKT2;1 or other salt-responsive genes.Taken together,our study indicated that GCN5 plays a key role in enhancing salt tolerance in rice.展开更多
Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for...Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils.展开更多
The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,t...The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,to salt treatments and gibberellic acid(GA3).The study encompasses germination,plant growth,total protein content and oil content as key parameters.Through comprehensive analysis,it identifies TG-37 A and KDG-128 as salt-tolerant genotypes,and GG-20 as salt-susceptible genotypes,which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties.Moreover,the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars.Principal Component Analysis(PCA) underscores the significance of the first principal component(PC1)in explaining the majority of variance,capturing primary trends and differences in plant length.Analysis of Variance(ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes.Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content,plant length and oil content,and a moderately positive correlation between protein content and oil content.These findings provide valuable insights into groundnut physiology,salt tolerance,and nutritional composition,with implications for future research in sustainable agriculture and crop improvement.展开更多
Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC ...Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC in antioxidant defense.Here,our genetic studies reveal the positive regulation of salt tolerance in maize by the transcription factor ZmNAC84.Under salt stress,overexpression of ZmNAC84 in maize increased the expression of ZmCAT1,enhanced CAT activity,and consequently reduced H_(2)O_(2) accumulation,thereby improving salt stress tolerance in maize.Whereas RNA interference-mediated knockdown of ZmNAC84 produced the opposite effect.Subsequently,we found that ZmNAC84 directly binds to and regulates the expression of the ZmCAT1 promoter,and the hybridized material also demonstrated that ZmCAT1 is a downstream target gene of ZmNAC84.In addition,phenotypic and biochemical analyses indicated that ZmCAT1 positively regulated salt tolerance by regulating H_(2)O_(2) accumulation under salt stress.Taken together,these results reveal the function of ZmNAC84 in regulating ZmCAT1-mediated antioxidant defense in response to salt stress in plants.展开更多
Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental st...Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future.展开更多
Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate t...Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes.展开更多
Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mec...Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mechanisms is still insufficient.Herein,we newly synthesized selenium-doped carbon dots nanoparticles coated with poly acrylic acid(poly acrylic acid coated selenium doped carbon dots,PAA@Se-CDs)and used it to prime seeds of rapeseeds.The TEM(transmission electron microscope)size and zeta potential of PAA@Se-CDs are 3.8±0.2 nm and-30 mV,respectively.After 8 h priming,the PAA@Se-CDs nanoparticles were detected in the seed compartments(seed coat,cotyledon,and radicle),while no such signals were detected in the NNP(no nanoparticle control)group(SeO_2 was used as the NNP).Nanopriming with PAA@Se-CDs nanoparticles increased rapeseeds germination(20%)and seedling fresh weight(161%)under saline conditions compared to NNP control.PAA@Se-CDs nanopriming significantly enhanced endo-β-mannanase activities(255%increase,21.55μmol h^(-1)g^(-1)vs.6.06μmol h^(-1)g^(-1),at DAS 1(DAS,days after sowing)),total soluble sugar(33.63 mg g^(-1)FW(fresh weight)vs.20.23 mg g^(-1)FW)and protein contents(1.96μg g^(-1)FW vs.1.0μg g^(-1)FW)to support the growth of germinating seedlings of rapeseeds under salt stress,in comparison with NNP co ntrol.The respiration rate and ATP content were increased by 76%and 607%,respectively.The oxidative damage of salinity due to the overaccumulation of reactive oxygen species(ROS)was alleviated by PAA@Se-CDs nanopriming by increasing the antioxidant enzyme activities(SOD(superoxide dismutase),POD(peroxidase),and CAT(catalase)).Another mechanism behind PAA@Se-CDs nanopriming improving rapeseeds salt tolerance at seedling stage was reducing sodium(Na^(+))accumulation and improving potassium(K^(+))retention,hence increasing the K^(+)/Na^(+)ratio under saline conditions.Overall,our results not only showed that seed nanopriming with PAA@Se-CDs could be a good approach to improve salt tolerance,but also add more knowledge to the mechanism behind nanopriming-improved plant salt tolerance at germination and early seedling growth stage.展开更多
[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Fo...[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Four high-generation stable rice lines with diverse salt tolerance were employed as test materials,and four NaCl concentration gradients were established for seed soaking treatment.[Results]The seedling survival rate of line 151465 underwent significant alterations after soaking with four different salt concentrations,and the survival rate was the highest after treatment with 1.8%NaCl for 1 d,reaching 65.2%.The average survival rate of other three lines with different salt tolerance reached 62%after soaking with 1.8%NaCl for 1 d,which was significantly higher than those of the 2.2%NaCl and 0%NaCl treatments.[Conclusions]This study provides a basis for reducing the effect of abiotic stress on rice growth and development and improving the utilization rate of saline-alkali land.展开更多
Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes p...Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses.展开更多
Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution a...Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution and human activities such as inappropriate irrigation practices. Natural geological progressions like weathering of rocks, arid climate, and higher evaporation, as well as anthropogenic activities, including the use of brackish water for irrigation, and poor tillage operations, are the foremost causes of soil salinization. Typical characteristics of saline soils are salt stress, high pH, and lack of organic carbon, as well as low availability of nutrients. Disruption of precipitation patterns as well as high average annual temperatures due to climate change additionally negatively affects the process of soil salinization. Productivity and ability to support crop growth are reduced on saline soil. Salinity-induced stress reduces plant growth by modulating the antioxidative system and nutrient orchestration. The aim of this work is to show that the mentioned problems can be alleviated in several ways such as the addition of biochar, exogenous application of several elicitors, seed priming, etc. Research has shown that the addition of biochar can significantly improve the recovery of saline soil. The addition of biochar has no significant effect on soil pH, while the cation exchange capacity of the soil increased by 17%, and the electrical conductivity of the saturated paste extract decreased by 13.2% (depends on the initial salinity and the type of biochar raw material). Moreover, biochar enriched with silicon increases the resistance of bananas to salt stress. In addition, exogenous application of several elicitors helps plants to alleviate stress by inducing stress-related physicochemical and molecular changes (selenium, sulfur, silicon, salicylic acid). Finally, seed priming showed positive effects on metabolomics, proteomics and growth of plants subjected to abiotic stress. Priming usually involves immersing the seed in a solution for a period of time to induce physiological and metabolic progression prior to germination.展开更多
Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maiz...Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maize is of great importance.In the current study,a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.In total,125 QTLs were detected using a high-density genetic bin map,with one to five QTLs explaining 6.05–32.02%of the phenotypic variation for each trait.The total phenotypic variation explained(PVE)by all detected QTLs ranged from 6.84 to 63.88%for each trait.Of all 125 QTLs,only three were major QTLs distributed in two genomic regions on chromosome 6,which were involved in three salt tolerance-related traits.In addition,10 pairs of epistatic QTLs with additive effects were detected for eight traits,explaining 0.9 to 4.44%of the phenotypic variation.Furthermore,18 QTL hotspots affecting 3–7 traits were identified.In one hotspot(L5),a gene cluster consisting of four genes(ZmNSA1,SAG6,ZmCLCg,and ZmHKT1;2)was found,suggesting the involvement of multiple pleiotropic genes.Finally,two important candidate genes,Zm00001d002090 and Zm00001d002391,were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.Zm00001d002090 encodes a calcium-dependent lipid-binding(CaLB domain)family protein,which may function as a Ca^(2+)sensor for transmitting the salt stress signal downstream,while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.展开更多
Betaine is a very effective osmoprotectant found in many organisms. In high plants, betaine is synthesized by oxidation of choline in two sequential steps: choline-->betaine aldehyde-->betaine. The first step is...Betaine is a very effective osmoprotectant found in many organisms. In high plants, betaine is synthesized by oxidation of choline in two sequential steps: choline-->betaine aldehyde-->betaine. The first step is catalyzed by choline monooxygenase (CMO). In this study, the full-length CMO cDNA (1 820 bp) was cloned from halophyte Suaeda liaotungensis Kitag by RT-PCR and RACE. It included a 123 bp 5' UTR, a 368 bp 3' UTR and a 1 329 bp open reading frame encoding a 442-amino-acid polypeptide with 77%, 72% and 74% sequence identity compared to CMOs from spinach, sugar beet and Atriplex hortensis, respectively. The CMO open reading frame (ORF) was cloned and the plant expression vector pBI121-CMO was constructed. It was transferred into tobacco ( Nicotiana tabacum L. ev. 89) via Agrobacterium mediation. PCR and Southern blotting analysis showed that the CMO gene was integrated into tobacco genome. Transgenic tobacco plants contained higher amount of betaine than that of control plants and were able to survive on MS medium containing 250 mmol/L NaCl. Relative electronic conductivity demonstrated less membrane damage in transgenic plants as in the wild type.展开更多
Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars...Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars differing in salt sensitivity were investigated with 0-300 mmol/L NaCl treatments. With 0-200 mmol/L NaCl treatments, activities of arginine decarboxylase (ADC) and transglutaminase (TGase) and PA oxidase (PAO) in the roots of barley seedlings all increased, while TGase and PAO activities decreased slightly at 300 mmol/L NaCl. As a result, free Put (fPut) content increased continuously with increasing concentrations of NaCl, while levels of free Spd (fSpd) and an unknown PA (fPAx) and bPAs (bPut, bSpd and bPAx), as well as (fSpd + fPAx)/fPut ratio rose at 50-200 mmol/L NaCl and reduced at 300 mmol/L NaCl. However, no significant change in the tetra-amine spermine (Spin) content was observed. Statistical analysis showed that GR was very significantly positively correlated with (fSpd + fPAx)/fPut ratios and the contents of bPAs, whereas a significant inverse correlation existed between GR and the ratios of fPA contents to bPA levels. These results showed that, under salt stress, the balance between fSpd, fPAx and fPut levels and an equipoise between fPA and bPA contents in roots were important to salt tolerance of barley seedlings.展开更多
[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of ...[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.展开更多
[Objective] The aim of this study was to provide the theoretical basis for screening and utilizing salt-tolerant tomato varieties as well as for cultivating salt-resistance.[Method] Salinity tolerance of tomato during...[Objective] The aim of this study was to provide the theoretical basis for screening and utilizing salt-tolerant tomato varieties as well as for cultivating salt-resistance.[Method] Salinity tolerance of tomato during seed germination under simple salt sodium chloride and double salt calcium nitrate or sodium chloride stress were studied by Petri dish culturing.[Result] As the two kinds salt concentration increased,the germination regularity,the germination rate,the germination index and the growing vigor index of tomato seedlings decreased,but the germination losing rate increased.When salt concentration was from 0.2% to 0.4%,there was little difference among all indexes under two kinds of salt stress.However,when salt concentration was from 0.6% to 1.0%,the difference among all indexes under two kinds of salt stress was significant.[Conclusion] Salinity tolerance of tomato seeds under double salt calcium nitrate or sodium chloride stress was higher than that under simple salt sodium chloride stress.展开更多
[Objective] The aim of the study is to understand the changes of fatty acid composition of rice thylakoid membrane under salt stress.[Method] Under salt stress of different concentrations of NaCl,rice seedlings of Pok...[Objective] The aim of the study is to understand the changes of fatty acid composition of rice thylakoid membrane under salt stress.[Method] Under salt stress of different concentrations of NaCl,rice seedlings of Pokkali and Peta with six leaves and one central leaf were used as experimental materials to extract the fatty acid from their thylakoid membranes,and gas chromatograph(1890)was used to analyze fatty acid composition.[Result] Fatty acid component 14∶0,18∶0,16∶1(3t),18∶1 in both the two experimental materials showed little variations in the first four days of salt stress,whereafter they increased slightly;while the fatty acid component 16∶0 and level of saturation of fatty acid(LSFA)showed the similar variation trend in the first four days of treatment compared to those of the fatty acid components mentioned above,whereafter they rose in Pokkali and presented an opposite variation trend in Peta;fatty acid component 18∶3 and level of unsaturation of fatty acid(LUFA)reduced all the time under stress condition,and the reducing amplitude in 100 mmol/L NaCl treatment group was smaller than that of 100 mmol/L NaCl treatment group,and in Pokkali was smaller than that in Peta under specific conditions.Meanwhile,level of saturation of fatty acid in both experimental materials increased,and the rising amplitude in Peta was smaller than that of Pokkali.[Conclusion] With regard to LUFA,Pokkali is endowed with more salt tolerance than Peta.展开更多
[Objective] The aim was to study wheat salt resistance appraisal indicators under the condition of saline water irrigation.[Method] A trial was conducted with five varieties irrigated with saline water at 1,2,4,6,and ...[Objective] The aim was to study wheat salt resistance appraisal indicators under the condition of saline water irrigation.[Method] A trial was conducted with five varieties irrigated with saline water at 1,2,4,6,and 8 g/L during 2009-2010 and 2010-2011 in the research station of Dry-land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences.With standardized indicators for measuring treatment,the response relations among different salt stress levels and winter wheat growth index were analyzed in this study.[Result] Under the condition of different salinity of irrigation,relative plant height after jointing stage,relative leaf area index,relative dry matter weight,relative ear number per unit area showed significant differences among treatments and yield showed significant correlation,which can be taken as salt-resistance examination index of wheat.[Conclusion] The results showed that the relative height after jointing stage was recommended as the most practical salt-tolerance appraisal indices,because it was easy to be observed and sensitive to salt stress.展开更多
The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determin...The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.展开更多
For screening out salt tolerance germplasm and providing materials for ge- netic research of peanut, based on the indexes including relative germination poten- tial, relative germination rate, relative germination ind...For screening out salt tolerance germplasm and providing materials for ge- netic research of peanut, based on the indexes including relative germination poten- tial, relative germination rate, relative germination index and salt-injury rate, 128 peanut germplasms were selected for salt-tolerant identification and estimation under 2.5% NaCI. We found significant but various depressing levels of germination rate under salt stress among different germplasms, and only 5% of 128 germplasms were highly resistant to salinity. We also found that the relative germination index was a useful evaluation index for salt tolerance besides salt damage rate and rela- tive germination rate. After all, we comprehensively screened out 7 materials (JS011, JS024, JS125, JS491, JS523, JS524 and JS525) as salt tolerance germplasms for further research. Key展开更多
Proline is one of the most important and widespread osmolyte which functions in adaptation to adverse environmental stresses in many organisms. Also it is an important carbon and nitrogen resource in higher plants. Me...Proline is one of the most important and widespread osmolyte which functions in adaptation to adverse environmental stresses in many organisms. Also it is an important carbon and nitrogen resource in higher plants. Metabolism of proline has been elucidated in many plant species. However, transport of proline was poorly characterized although transport system plays an important role in proline distribution in different tissues. We isolated one full_length cDNA encoding proline transporter from the typical halophyte: Atriplex hortensis L. through cDNA library screening and 5′_RACE. The deduced amino acid sequence had eleven transmembrane domains, showed 60%-69% similarities to other ProTs and the gene was designated AhProT1. In the phylogenetic tree, higher plants' ProTs, e.g. AhProT1, showed more similar to ProP from microorganisms than ProT from mammalians. AhProT1 gene was transformed into Arabidopsis thaliana under 35S promoter. In MS medium containing [U_ 14 C] proline, AhProT1 + plants were able to accumulate much more radiolabeled proline in the roots than control plants. In MS medium containing different concentrations of NaCl, AhProT1 + plants could endure 200 mmol/L NaCl and keep development and biomass increase with proline supply, whereas control plants died back at 150 mmol/L NaCl.展开更多
基金supported by the Key R&D Program of Jiangsu Province (Grant No.BE2022335)the Jiangsu Province Government (Grant No.JBGS[2021]001)+3 种基金the Natural Science Foundation of Jiangsu Province (Grant No.BK20230295)the Project of Zhongshan Biological Breeding Laboratory (Grant No.BM2022008-02)the Outstanding Youth Fund of Jiangsu Province (Grant No.BK20230013)the Priority Academic Program Development of Jiangsu Higher Education Institutions in China。
文摘Histone acetylation is indispensable in the process of crops resisting abiotic stress,which is jointly catalyzed by histone acetyltransferases and deacetylases.However,the mechanism of regulating salt tolerance through histone acetyltransferase GCN5 is still unclear.We revealed that GCN5 can catalyze the acetylation of canonical H3 and H4 lysine residues both in vivo and in vitro in rice.The knockout mutants and RNA interference lines of Os GCN5 exhibited severe growth inhibition and defects in salt tolerance,while the over-expression of Os GCN5 enhanced the salt tolerance of rice seedlings,indicating that Os GCN5 positively regulated the response of rice to salt stress.RNA-seq analysis suggested Os GCN5 may positively regulate the salt tolerance of rice by inhibiting the expression of Os HKT2;1 or other salt-responsive genes.Taken together,our study indicated that GCN5 plays a key role in enhancing salt tolerance in rice.
基金supported by The National Natural Science Foundation of China(32171957)Scientific and Technological Innovation 2030,Design and Cultivation of New High-Yielding Salt-Alkali Tolerant Soybean Varieties(2023ZD0403602)Knowledge Innovation Program of Wuhan(2023020201010127).
文摘Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils.
基金Bhakta Kavi Narsinh Mehta University for providing support through the SCORE(Scheme for Concurrent Research Enhancement-2023),Department of Life Sciences,Junagadh.
文摘The manuscript explores the complex interplay between groundnut genotypes,salt tolerance and hormonal influence,shedding light on the dynamic responses of three specific groundnut genotypes,KDG-128,TG-37 A and GG-20,to salt treatments and gibberellic acid(GA3).The study encompasses germination,plant growth,total protein content and oil content as key parameters.Through comprehensive analysis,it identifies TG-37 A and KDG-128 as salt-tolerant genotypes,and GG-20 as salt-susceptible genotypes,which highlighting the potential for targeted breeding efforts to develop more resilient groundnut varieties.Moreover,the quantification of protein and oil content under different treatments provides vital data for optimizing nutritional profiles in groundnut cultivars.Principal Component Analysis(PCA) underscores the significance of the first principal component(PC1)in explaining the majority of variance,capturing primary trends and differences in plant length.Analysis of Variance(ANOVA) and hierarchical analysis confirm the presence of statistically significant differences in protein and oil content among the genotypes.Pearson's correlation coefficient matrix analysis reveals strong positive correlations between plant length and protein content,plant length and oil content,and a moderately positive correlation between protein content and oil content.These findings provide valuable insights into groundnut physiology,salt tolerance,and nutritional composition,with implications for future research in sustainable agriculture and crop improvement.
基金supported by Natural Science Foundation of Jiangsu Province (BK20220999)the Fundamental Research Funds for the Central Universities (KJJQ2024009,KYQN2023025)+5 种基金National Natural Science Foundation of China (32201707)China Postdoctoral Science Foundation (2021M701739,2023T160323)Jiangsu Funding Program for Excellent Postdoctoral Talent (2022ZB330)Open Competition Mechanism to Select the Best Candidates Fund of Jiangsu province (JBGS[2021]012)Key Research and Development Program of Ningxia Hui Autonomous Region (2023BCF01009)the Achievement Transformation Fund Project of Hainan Research Institute of Nanjing Agricultural University (NAUSY-CG-YB07)。
文摘Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC in antioxidant defense.Here,our genetic studies reveal the positive regulation of salt tolerance in maize by the transcription factor ZmNAC84.Under salt stress,overexpression of ZmNAC84 in maize increased the expression of ZmCAT1,enhanced CAT activity,and consequently reduced H_(2)O_(2) accumulation,thereby improving salt stress tolerance in maize.Whereas RNA interference-mediated knockdown of ZmNAC84 produced the opposite effect.Subsequently,we found that ZmNAC84 directly binds to and regulates the expression of the ZmCAT1 promoter,and the hybridized material also demonstrated that ZmCAT1 is a downstream target gene of ZmNAC84.In addition,phenotypic and biochemical analyses indicated that ZmCAT1 positively regulated salt tolerance by regulating H_(2)O_(2) accumulation under salt stress.Taken together,these results reveal the function of ZmNAC84 in regulating ZmCAT1-mediated antioxidant defense in response to salt stress in plants.
基金supported by the National Natural Science Foundation of China (Grant Nos.31902057 and 32072615)Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ19C160012)the key research and development program of Zhejiang Province (Grant No.2021C02071)。
文摘Sweet osmanthus(Osmanthus fragrans) is a having general approval aromatic tree in China that is widely applied to landscaping and gardening. However, the evergreen tree adaptability is limited by many environmental stresses. Currently, limited information is available regarding the genetic analysis and functional identification of expansin genes in response to abiotic stress in sweet osmanthus. In this study, a total of 29 expansin genes were identified and divided into four groups by genome-wide analysis from the sweet osmanthus genome. Transcriptome and quantitative Real-time PCR analysis showed that the cell wall-localized protein expansin-like A(OfEXLA1) gene was significantly induced by salt and drought treatment. Histochemical GUS staining of transgenic Arabidopsis lines in which GUS activity was driven with the OfEXLA1 promoter, GUS activity was significantly induced by salt, drought, and exogenous abscisic acid(ABA). In yeast, we found OfEXLA1overexpression significantly improved the population of cells compared with wild-type strains after NaCl and polyethylene glycol(PEG)treatment. Additionally, OfEXLA1 overexpression not only promoted plant growth, but also improved the salt and drought tolerance in Arabidopsis. To gain insight into the role of ABA signaling in the regulation of OfEXLA1 improving abiotic tolerance in sweet osmanthus, four differentially expressed ABA Insensitive 5(ABI5)-like genes(OfABL4, OfABL5, OfABL7, and OfABL8) were identified from transcriptome, and dualluciferase(dual-LUC) and yeast one hybrid(Y1H) assay showed that OfABL4 and OfABL5 might bind to OfEXLA1 promoter to accumulate the OfEXLA1 expression by responding to ABA signaling to improve abiotic tolerance in sweet osmanthus. These results provide the information for understanding the molecular functions of expansin-like A gene and molecular breeding of sweet osmanthus in future.
基金supported by the Natural Science Foundation of Guangxi (Grant No.2022GXNSFBA035523)the China Postdoctoral Science Foundation (Grant No.2022MD713731)+1 种基金the Science and Technology Major Project of Guangxi Gui Ke (Grant No.AA22067096)the project of Guangxi featured fruit innovation team on pineapple breeding and cultivation post under national modern agricultural industry technology system (Grant No.nycytxgxcxtd-17-05)。
文摘Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes.
基金supported by the National Natural Science Foutndation of China (32071971,32001463)the National Key Research and Development Program of China (2022YFD2300205)+4 种基金Fundamental Research Funds for the Central Universities (2662023ZKPY002)the HZAU-AGIS Cooperation Fund (SZYJY2021008)the Key Research and Development Projects of Henan province (231111113000)the Hubei Agricultural Science and Technology Innovation Center Program (2021-620000-001-032)Hainan Major Science and Technology Projects (ZDKJ202001)。
文摘Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mechanisms is still insufficient.Herein,we newly synthesized selenium-doped carbon dots nanoparticles coated with poly acrylic acid(poly acrylic acid coated selenium doped carbon dots,PAA@Se-CDs)and used it to prime seeds of rapeseeds.The TEM(transmission electron microscope)size and zeta potential of PAA@Se-CDs are 3.8±0.2 nm and-30 mV,respectively.After 8 h priming,the PAA@Se-CDs nanoparticles were detected in the seed compartments(seed coat,cotyledon,and radicle),while no such signals were detected in the NNP(no nanoparticle control)group(SeO_2 was used as the NNP).Nanopriming with PAA@Se-CDs nanoparticles increased rapeseeds germination(20%)and seedling fresh weight(161%)under saline conditions compared to NNP control.PAA@Se-CDs nanopriming significantly enhanced endo-β-mannanase activities(255%increase,21.55μmol h^(-1)g^(-1)vs.6.06μmol h^(-1)g^(-1),at DAS 1(DAS,days after sowing)),total soluble sugar(33.63 mg g^(-1)FW(fresh weight)vs.20.23 mg g^(-1)FW)and protein contents(1.96μg g^(-1)FW vs.1.0μg g^(-1)FW)to support the growth of germinating seedlings of rapeseeds under salt stress,in comparison with NNP co ntrol.The respiration rate and ATP content were increased by 76%and 607%,respectively.The oxidative damage of salinity due to the overaccumulation of reactive oxygen species(ROS)was alleviated by PAA@Se-CDs nanopriming by increasing the antioxidant enzyme activities(SOD(superoxide dismutase),POD(peroxidase),and CAT(catalase)).Another mechanism behind PAA@Se-CDs nanopriming improving rapeseeds salt tolerance at seedling stage was reducing sodium(Na^(+))accumulation and improving potassium(K^(+))retention,hence increasing the K^(+)/Na^(+)ratio under saline conditions.Overall,our results not only showed that seed nanopriming with PAA@Se-CDs could be a good approach to improve salt tolerance,but also add more knowledge to the mechanism behind nanopriming-improved plant salt tolerance at germination and early seedling growth stage.
基金Supported by Saline-alkali Land Control and Soil Fertility Improvement Technology"Jiebangguashuai"Project of Jiangsu Coastal Development Group Co.,Ltd.(2022YHTDJB02).
文摘[Objectives]This study was conducted to enhance the salt tolerance of current rice varieties at the seedling stage and fulfill the urgent requirement for salt-tolerant rice varieties in coastal tidal flats.[Methods]Four high-generation stable rice lines with diverse salt tolerance were employed as test materials,and four NaCl concentration gradients were established for seed soaking treatment.[Results]The seedling survival rate of line 151465 underwent significant alterations after soaking with four different salt concentrations,and the survival rate was the highest after treatment with 1.8%NaCl for 1 d,reaching 65.2%.The average survival rate of other three lines with different salt tolerance reached 62%after soaking with 1.8%NaCl for 1 d,which was significantly higher than those of the 2.2%NaCl and 0%NaCl treatments.[Conclusions]This study provides a basis for reducing the effect of abiotic stress on rice growth and development and improving the utilization rate of saline-alkali land.
基金financially supported by the National Key Research and Development Program of China(2021YFD120110402)the National Natural Science Foundation of China(32272048,32272017)the Natural Science Foundation of Heilongjiang Province(LH2022C019)。
文摘Wild soybean(Glycine soja),a relative of cultivated soybean,shows high adaptability to adverse environmental conditions.We identified and characterized a wild soybean transcription factor gene,GsWRKY40,that promotes plant salt stress.GsWRKY40 was highly expressed in wild soybean roots and was up-regulated by salt treatment.GsWRKY40 was localized in nucleus and demonstrated DNA-binding activities but without transcriptional activation.Mutation and overexpression of GsWRKY40 altered salt tolerance of Arabidopsis plants.To understand the molecular mechanism of GsWRKY40 in regulating plant salt resistance,we screened a cDNA library and identified a GsWRKY40 interacting protein GsbHLH92 by using yeast two-hybrid approach.The physical interaction of GsWRKY40 and GsbHLH92 was confirmed by co-immunoprecipitation(co-IP),GST pull-down,and bimolecular fluorescence complementation(BiFC)techniques.Intriguingly,co-overexpression of GsWRKY40 and GsbHLH92 resulted in higher salt tolerance and lower ROS levels than overexpression of GsWRKY40 or GsbHLH92 in composite soybean plants,suggesting that GsWRKY40 and GsbHLH92 may synergistically regulate plant salt resistance through inhibiting ROS production.qRT-PCR data indicated that the expression level of GmSPOD1 gene encoding peroxidase was cooperatively regulated by GsWRKY40 and GsbHLH92,which was confirmed by using a dual luciferase report system and yeast one-hybrid experiment.Our study reveals a pathway that GsWRKY40 and GsbHLH92 collaboratively up-regulate plant salt resistance through impeding GmSPOD1 expression and reducing ROS levels,providing a novel perspective on the regulatory mechanisms underlying plant tolerance to abiotic stresses.
文摘Salt stress is one of the most harmful environmental stresses in recent times and represents a significant threat to food security. Soil salinization is caused by spontaneous natural processes of mineral dissolution and human activities such as inappropriate irrigation practices. Natural geological progressions like weathering of rocks, arid climate, and higher evaporation, as well as anthropogenic activities, including the use of brackish water for irrigation, and poor tillage operations, are the foremost causes of soil salinization. Typical characteristics of saline soils are salt stress, high pH, and lack of organic carbon, as well as low availability of nutrients. Disruption of precipitation patterns as well as high average annual temperatures due to climate change additionally negatively affects the process of soil salinization. Productivity and ability to support crop growth are reduced on saline soil. Salinity-induced stress reduces plant growth by modulating the antioxidative system and nutrient orchestration. The aim of this work is to show that the mentioned problems can be alleviated in several ways such as the addition of biochar, exogenous application of several elicitors, seed priming, etc. Research has shown that the addition of biochar can significantly improve the recovery of saline soil. The addition of biochar has no significant effect on soil pH, while the cation exchange capacity of the soil increased by 17%, and the electrical conductivity of the saturated paste extract decreased by 13.2% (depends on the initial salinity and the type of biochar raw material). Moreover, biochar enriched with silicon increases the resistance of bananas to salt stress. In addition, exogenous application of several elicitors helps plants to alleviate stress by inducing stress-related physicochemical and molecular changes (selenium, sulfur, silicon, salicylic acid). Finally, seed priming showed positive effects on metabolomics, proteomics and growth of plants subjected to abiotic stress. Priming usually involves immersing the seed in a solution for a period of time to induce physiological and metabolic progression prior to germination.
基金supported by grants from the National Natural Science Foundation of China(32101730)the National Key R&D Program Projects,China(2021YFD1201005)+2 种基金the Beijing Academy of Agriculture and Forestry Sciences(BAAFS)Excellent Scientist Training Program,China(JKZX202202)the BAAFS Science and Technology Innovation Capability Improvement Project,China(KJCX20230433)。
文摘Soil salinization poses a threat to maize production worldwide,but the genetic mechanism of salt tolerance in maize is not well understood.Therefore,identifying the genetic components underlying salt tolerance in maize is of great importance.In the current study,a teosinte-maize BC2F7 population was used to investigate the genetic basis of 21 salt tolerance-related traits.In total,125 QTLs were detected using a high-density genetic bin map,with one to five QTLs explaining 6.05–32.02%of the phenotypic variation for each trait.The total phenotypic variation explained(PVE)by all detected QTLs ranged from 6.84 to 63.88%for each trait.Of all 125 QTLs,only three were major QTLs distributed in two genomic regions on chromosome 6,which were involved in three salt tolerance-related traits.In addition,10 pairs of epistatic QTLs with additive effects were detected for eight traits,explaining 0.9 to 4.44%of the phenotypic variation.Furthermore,18 QTL hotspots affecting 3–7 traits were identified.In one hotspot(L5),a gene cluster consisting of four genes(ZmNSA1,SAG6,ZmCLCg,and ZmHKT1;2)was found,suggesting the involvement of multiple pleiotropic genes.Finally,two important candidate genes,Zm00001d002090 and Zm00001d002391,were found to be associated with salt tolerance-related traits by a combination of linkage and marker-trait association analyses.Zm00001d002090 encodes a calcium-dependent lipid-binding(CaLB domain)family protein,which may function as a Ca^(2+)sensor for transmitting the salt stress signal downstream,while Zm00001d002391 encodes a ubiquitin-specific protease belonging to the C19-related subfamily.Our findings provide valuable insights into the genetic basis of salt tolerance-related traits in maize and a theoretical foundation for breeders to develop enhanced salt-tolerant maize varieties.
文摘Betaine is a very effective osmoprotectant found in many organisms. In high plants, betaine is synthesized by oxidation of choline in two sequential steps: choline-->betaine aldehyde-->betaine. The first step is catalyzed by choline monooxygenase (CMO). In this study, the full-length CMO cDNA (1 820 bp) was cloned from halophyte Suaeda liaotungensis Kitag by RT-PCR and RACE. It included a 123 bp 5' UTR, a 368 bp 3' UTR and a 1 329 bp open reading frame encoding a 442-amino-acid polypeptide with 77%, 72% and 74% sequence identity compared to CMOs from spinach, sugar beet and Atriplex hortensis, respectively. The CMO open reading frame (ORF) was cloned and the plant expression vector pBI121-CMO was constructed. It was transferred into tobacco ( Nicotiana tabacum L. ev. 89) via Agrobacterium mediation. PCR and Southern blotting analysis showed that the CMO gene was integrated into tobacco genome. Transgenic tobacco plants contained higher amount of betaine than that of control plants and were able to survive on MS medium containing 250 mmol/L NaCl. Relative electronic conductivity demonstrated less membrane damage in transgenic plants as in the wild type.
文摘Plant growth rate (GR), contents of free polyamines (fPAs) and bound polyamines (bPAs) and activities of some key enzymes involved in polyamine (PA) metabolism in the roots of two barley (Hordeum valgare L.) cultivars differing in salt sensitivity were investigated with 0-300 mmol/L NaCl treatments. With 0-200 mmol/L NaCl treatments, activities of arginine decarboxylase (ADC) and transglutaminase (TGase) and PA oxidase (PAO) in the roots of barley seedlings all increased, while TGase and PAO activities decreased slightly at 300 mmol/L NaCl. As a result, free Put (fPut) content increased continuously with increasing concentrations of NaCl, while levels of free Spd (fSpd) and an unknown PA (fPAx) and bPAs (bPut, bSpd and bPAx), as well as (fSpd + fPAx)/fPut ratio rose at 50-200 mmol/L NaCl and reduced at 300 mmol/L NaCl. However, no significant change in the tetra-amine spermine (Spin) content was observed. Statistical analysis showed that GR was very significantly positively correlated with (fSpd + fPAx)/fPut ratios and the contents of bPAs, whereas a significant inverse correlation existed between GR and the ratios of fPA contents to bPA levels. These results showed that, under salt stress, the balance between fSpd, fPAx and fPut levels and an equipoise between fPA and bPA contents in roots were important to salt tolerance of barley seedlings.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund(CX(12)5035)Jiangsu Agricultural "Three New Engineering" Project(SXGC[2014]299)~~
文摘[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.
基金Supported by the International Science and Technology Cooperation Program(2008DFA31820)~~
文摘[Objective] The aim of this study was to provide the theoretical basis for screening and utilizing salt-tolerant tomato varieties as well as for cultivating salt-resistance.[Method] Salinity tolerance of tomato during seed germination under simple salt sodium chloride and double salt calcium nitrate or sodium chloride stress were studied by Petri dish culturing.[Result] As the two kinds salt concentration increased,the germination regularity,the germination rate,the germination index and the growing vigor index of tomato seedlings decreased,but the germination losing rate increased.When salt concentration was from 0.2% to 0.4%,there was little difference among all indexes under two kinds of salt stress.However,when salt concentration was from 0.6% to 1.0%,the difference among all indexes under two kinds of salt stress was significant.[Conclusion] Salinity tolerance of tomato seeds under double salt calcium nitrate or sodium chloride stress was higher than that under simple salt sodium chloride stress.
基金Supported by the Fund of Qinglan Project for the University in Jiangsu Province~~
文摘[Objective] The aim of the study is to understand the changes of fatty acid composition of rice thylakoid membrane under salt stress.[Method] Under salt stress of different concentrations of NaCl,rice seedlings of Pokkali and Peta with six leaves and one central leaf were used as experimental materials to extract the fatty acid from their thylakoid membranes,and gas chromatograph(1890)was used to analyze fatty acid composition.[Result] Fatty acid component 14∶0,18∶0,16∶1(3t),18∶1 in both the two experimental materials showed little variations in the first four days of salt stress,whereafter they increased slightly;while the fatty acid component 16∶0 and level of saturation of fatty acid(LSFA)showed the similar variation trend in the first four days of treatment compared to those of the fatty acid components mentioned above,whereafter they rose in Pokkali and presented an opposite variation trend in Peta;fatty acid component 18∶3 and level of unsaturation of fatty acid(LUFA)reduced all the time under stress condition,and the reducing amplitude in 100 mmol/L NaCl treatment group was smaller than that of 100 mmol/L NaCl treatment group,and in Pokkali was smaller than that in Peta under specific conditions.Meanwhile,level of saturation of fatty acid in both experimental materials increased,and the rising amplitude in Peta was smaller than that of Pokkali.[Conclusion] With regard to LUFA,Pokkali is endowed with more salt tolerance than Peta.
基金Bohai Granary Technology Demonstration Project (2013BAD05B0203)Medium and Low-yield Farmland Improvement Science and Technology Project (2012BAD05B0205)~~
文摘[Objective] The aim was to study wheat salt resistance appraisal indicators under the condition of saline water irrigation.[Method] A trial was conducted with five varieties irrigated with saline water at 1,2,4,6,and 8 g/L during 2009-2010 and 2010-2011 in the research station of Dry-land Farming Institute of Hebei Academy of Agricultural and Forestry Sciences.With standardized indicators for measuring treatment,the response relations among different salt stress levels and winter wheat growth index were analyzed in this study.[Result] Under the condition of different salinity of irrigation,relative plant height after jointing stage,relative leaf area index,relative dry matter weight,relative ear number per unit area showed significant differences among treatments and yield showed significant correlation,which can be taken as salt-resistance examination index of wheat.[Conclusion] The results showed that the relative height after jointing stage was recommended as the most practical salt-tolerance appraisal indices,because it was easy to be observed and sensitive to salt stress.
文摘The eelgrass ( Zostera marina L.) was treated with artificial seawater (ASW) of different salinities ( 100%, 150% and 200% seawater) for 5 d. The activities of two enzymes extracted from the plant leaves were determined under a salinity grade in vitro So were the photosynthesis rates of the plants from the three treatments in the media with different salinities 100%, 150%, 200%, 300% ASW) and Some physiological data. The data showed that under increased salinities (concentrated seawater), Na+, Cl-, MDA (malon dialdehyde) and glucose contents and the osmotic potentials ( absolute value) in the leaves increased with the salinity elevation in the medium (ASW), but both K+ and free amino acid (mainly proline) contents decreased. Malate dehydrogenase (MDH) from the plant leaves under a salinity grade showed its activities (A) as follows: A(100%) (ASW) > A(150%) (ASW) > A(200%) (ASW). Phosphoenolpyruvate carboxylase (PEPC) extracted from the 100% ASW- and 200% ASW-treated plants showed similar activities (both insensitive to salinities) under the salinity grade in vitro, but the activities of PEPC from plants treated with 150% ASW were dependent oil salinity. Whether the plant is stressed at 150% ASW and can stand higher salinity than seawater needs to be studied further. Meantime, die data do not agree with the opinion that the adaptation of the eelgrass to seawater salinity is partly fulfilled by its insensitiveness to salinities in Some metabolic enzymes. It can be inferred that the lack of transpiration may be an important aspect of tire plant's tolerance to seawater salinity.
基金Supported by National Peanut Industry Technology System"Nanjing Comprehensive Experimental Station"(CARS-14)the Fund of Independent Innovation of Agricultural Science and Technology in Jiangsu Province"On the Collection,Identification and Shared Service of Germplasm Resources of Main Field Crops"[CX(14)2001]~~
文摘For screening out salt tolerance germplasm and providing materials for ge- netic research of peanut, based on the indexes including relative germination poten- tial, relative germination rate, relative germination index and salt-injury rate, 128 peanut germplasms were selected for salt-tolerant identification and estimation under 2.5% NaCI. We found significant but various depressing levels of germination rate under salt stress among different germplasms, and only 5% of 128 germplasms were highly resistant to salinity. We also found that the relative germination index was a useful evaluation index for salt tolerance besides salt damage rate and rela- tive germination rate. After all, we comprehensively screened out 7 materials (JS011, JS024, JS125, JS491, JS523, JS524 and JS525) as salt tolerance germplasms for further research. Key
文摘Proline is one of the most important and widespread osmolyte which functions in adaptation to adverse environmental stresses in many organisms. Also it is an important carbon and nitrogen resource in higher plants. Metabolism of proline has been elucidated in many plant species. However, transport of proline was poorly characterized although transport system plays an important role in proline distribution in different tissues. We isolated one full_length cDNA encoding proline transporter from the typical halophyte: Atriplex hortensis L. through cDNA library screening and 5′_RACE. The deduced amino acid sequence had eleven transmembrane domains, showed 60%-69% similarities to other ProTs and the gene was designated AhProT1. In the phylogenetic tree, higher plants' ProTs, e.g. AhProT1, showed more similar to ProP from microorganisms than ProT from mammalians. AhProT1 gene was transformed into Arabidopsis thaliana under 35S promoter. In MS medium containing [U_ 14 C] proline, AhProT1 + plants were able to accumulate much more radiolabeled proline in the roots than control plants. In MS medium containing different concentrations of NaCl, AhProT1 + plants could endure 200 mmol/L NaCl and keep development and biomass increase with proline supply, whereas control plants died back at 150 mmol/L NaCl.