期刊文献+
共找到2,042篇文章
< 1 2 103 >
每页显示 20 50 100
Influence of deformation on the corrosion behavior of LZ91 Mg-Li alloy 被引量:3
1
作者 Xueqin Liu Xuejian Wang +3 位作者 Enyu Guo Zongning Chen Huijun Kang Tongmin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期72-81,共10页
The effect of rolling and forging on the microstructure and corrosion behavior of LZ91 alloy was investigated using an electron probe micro-analyzer,immersion and electrochemical tests.Results showed that the area fra... The effect of rolling and forging on the microstructure and corrosion behavior of LZ91 alloy was investigated using an electron probe micro-analyzer,immersion and electrochemical tests.Results showed that the area fraction of theβ-Li phase remained unchanged,and the grain size of theβ-Li phase decreased after forging.The as-rolled forged alloy(FR-LZ91)exhibited the highest area fraction of theβ-Li phase and the longest grains.The corrosion resistance of the forged LZ91 alloy increased due to grain refinement that prevented further corrosion during the immersion test.Among the experimental alloys,FR-LZ91 showed the highest resistance of corrosion film and charge transfer resistance values due to its protective film caused by the high area fraction of theβ-Li phase. 展开更多
关键词 magnesium lithium alloy DEFORMATION electrochemical test corrosion behavior
下载PDF
Corrosion and in vitro cytocompatibility investigation on the designed Mg-Zn-Ag metallic glasses for biomedical application
2
作者 Jian Wang Lingzhong Meng +6 位作者 Weixin Xie Chen Ji Ronghua Wang Pinghu Zhang Liling Jin Liyuan Sheng Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1566-1580,共15页
In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(X... In the present work,seven Mg-Zn-Ag alloys with the nominal composition of Mg_(96-x)Zn_(x)Ag_(4)(x=17,20,23,26,29,32,35 in at.%)were prepared by induction melting and single-roller melt-spinning.The X-ray diffraction(XRD)analyses indicate the metallic glasses with three composition of Mg_(73)Zn_(23)Ag_(4),Mg_(70)Zn_(26)Ag_(4),and Mg_(67)Zn_(29)Ag_(4)were obtained successfully.The differential scanning calorimetry(DSC)measurement was used to obtain the characteristic temperature of Mg-Zn-Ag metallic glasses for the glass-forming ability analysis.The maximum glass transition temperature(Trg)was found to be 0.525 with a composition close to Mg_(67)Zn_(29)Ag_(4),which results in the best glass-forming ability.Moreover,the immersion test in simulated body fluid(SBF)demonstrate the relative homogeneous corrosion behavior of the Mg-Zn-Ag metallic glasses.The corrosion rate of Mg-Zn-Ag metallic glasses in SBF solution decreases with the increase of Zn content.The sample Mg_(67)Zn_(29)Ag_(4)has the lowest corrosion rate of 0.19mm/yr,which could meet the clinical application requirement well.The in vitro cell experiments show that the Madin-Darby canine kidney(MDCK)cells cultured in sample Mg_(67)Zn_(29)Ag_(4)and its extraction medium have higher activity.However,the Mg-Zn-Ag metallic glasses exhibit obvious inhibitory effect on human rhabdomyosarcoma(RD)tumor cells.The present investigations on the glass-forming ability,corrosion behavior,cytocompatibility and tumor inhibition function of the Mg-Zn-Ag based metallic glass could reveal their biomedical application possibility. 展开更多
关键词 Metallic glasses Mg-Zn-Ag corrosion behavior In vitro cytocompatibility
下载PDF
LPCS Ni-Zn-Al_(2)O_(3) Intermediate Layer Enhanced SPS NiCr-Cr_(3)C_(2) Coating with Higher Corrosion and Wear Resistances
3
作者 白杨 LI Yan +2 位作者 XING Lukuo LI Xiangbo WANG Zhenhua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期188-195,共8页
The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by usin... The double-layer NiCr-Cr_(3)C_(2)/Ni-Zn-Al_(2)O_(3) coatings with sufficient corrosion and wear resistance were prepared on low carbon steel substrates.The intermediate layers Ni-Zn-Al_(2)O_(3) were fabricated by using low-pressure cold spray (LPCS) method to improve the salt fog corrosion resistance properties of the supersonic plasma spray (SPS) NiCr-Cr_(3)C_(2) coatings.The friction and wear performance for the double-layer and single-layer NiCr-Cr_(3)C_(2) coatings were carried out by line-contact reciprocating sliding,respectively.Combined with the coating surface analysis techniques,the effect of the salt fog corrosion on the tribological properties of the double-layer coatings was studied.The results showed that the double-layer coatings exhibited better wear resistance than that of the single-layer coatings,due to the better corrosion resistance of the intermediate layer;the wear mass losses of the double-layer coatings was reduced by 70%than that of the single layer coatings and the wear mechanism of coatings after salt fog corrosion conditions is mainly corrosion wear. 展开更多
关键词 low-pressure cold spray NiCr-Cr_(3)C_(2)coating wear behavior salt fog corrosion
下载PDF
Impressive strides in amelioration of corrosion behavior of Mg-based alloys through the PEO process combined with surface laser process: A review
4
作者 Arash Fattah-alhosseini Razieh Chaharmahali 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4390-4406,共17页
The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ce... The unsatisfactory corrosion properties of Mg-based alloys pose a significant obstacle to their widespread application. Plasma electrolytic oxidation(PEO) is a prevalent and effective coating method that produces a ceramic-like oxide coating on the surface of Mg-based alloys,enhancing their resistance to corrosion. Research has demonstrated that PEO treatment can substantially improve the corrosion performance of alloys based on magnesium in the short term. In an effort to enhance the corrosion resistance of PEO coatings over an extended period of time, researchers have turned their attention to the use of laser processes as both pre-and post-treatments in conjunction with the PEO process. Various laser processes, such as laser shock melting(LSM), laser shock adhesion(LSA), laser shock texturing(LST), and laser shock peening(LSP), have been investigated for their potential to improve PEO coatings on Mg substrates and their alloys. These laser melting processes can homogenize and alter the microstructure of Mg-based alloys while leaving the bulk material unchanged, thereby modifying the substrate surface. However, the porous and rough structure of PEO coatings, with their open and interconnected pore structure, can reduce their long-term corrosion resistance. As such, various laser processes are well-suited for surface modification of these coatings. This study will first examine the PEO process and the various types of laser processes used in this process, before investigating the corrosion behavior of PEO coatings in conjunction with laser pre-and post-treatment processes. 展开更多
关键词 Mg and its alloy Laser surface texturing corrosion behavior PEO process
下载PDF
Corrosion behavior of composite coatings containing hydroxyapatite particles on Mg alloys by plasma electrolytic oxidation: A review
5
作者 Arash Fattah-alhosseini Razieh Chaharmahali +1 位作者 Sajad Alizad Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期2999-3011,共13页
Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their suscep... Mg and its alloys have been introduced as promising biodegradable materials for biomedical implant applications due to their excellent biocompatibility, mechanical behavior, and biodegradability. However, their susceptibility to rapid corrosion within the body poses a significant challenge and restricts their applications. To overcome this issue, various surface modification techniques have been developed to enhance the corrosion resistance and bioactivity of Mg-based implants. PEO is a potent technique for producing an oxide film on a surface that significantly minimizes the tendency to corrode. However, the inevitable defects due to discharges and poor biological activity during the coating process remain a concern. Therefore, adding suitable particles during the coating process is a suitable solution. Hydroxyapatite(HAp)has attracted much attention in the development of biomedical applications in the scientific community. HAp shows excellent biocompatibility due to its similarity in chemical composition to the mineral portion of bone. Therefore, its combination with Mg-based implants through PEO has shown significant improvements in their corrosion resistance and bioactivity. This review paper provides a comprehensive overview of the recent advances in the preparation, characterization, corrosion behavior and bioactivity applications of HAp particles on Mg-based implants by PEO. 展开更多
关键词 Mg and its alloys HYDROXYAPATITE corrosion behavior Composite coatings Plasma electrolytic oxidation(peo)
下载PDF
Characterization of localized corrosion pathways in 2195-T8 Al-Li alloys exposed to acidic solution 被引量:4
6
作者 De-jun Liu Gan Tian +2 位作者 Guo-feng Jin Wei Zhang You-hong Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期152-165,共14页
The corrosion properties of aluminum-lithium(Al-Li) alloys, which are potential materials used to construct for tanks of liquid rockets or missiles, are essential for safe propellant storage and transport. In order to... The corrosion properties of aluminum-lithium(Al-Li) alloys, which are potential materials used to construct for tanks of liquid rockets or missiles, are essential for safe propellant storage and transport. In order to manifest the corrosion resistance of the 2195 Al-Li alloy in practical propellant tanks filled with N2O4, the alloy was soaked in 30% nitric acid solution, an accelerating corrosion environment, to test its corrosion behavior. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM)were used to characterize microstructure and corrosion morphology of the alloy. Focused ion beam(FIB),combined with SEM, was used to demonstrate localized corrosion features and the propagation of corrosion pathways beneath the alloy surface. It was found that the corrosion network was formed with most intergranular corrosion and sparse intragranular corrosion. Additionally, the distribution and number of intermetallic particles influenced the localized corrosion degree and the direction of corrosion pathways. Aggregated particles made corrosion pathways continuously and caused more severe corrosion. The results from this work were valid and useful to corrosion prevention and protection for storage safety on propellant tanks in N_(2)O_(4). 展开更多
关键词 Al-Li alloy corrosion behavior corrosion features Immersion test Intermetallic particles
下载PDF
Relationship between elements migration ofα-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy 被引量:2
7
作者 Min Ao Yucheng Ji +4 位作者 Pan Yi Ni Li Li Wang Kui Xiao Chaofang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期112-121,共10页
First principles calculations and scanning Kelvin probe force microscopy(SKPFM)were used to investigate the effect of elements migration ofα-AlFeMnSi phase on micro-galvanic corrosion behavior of Al-Zn-Mg alloy.The s... First principles calculations and scanning Kelvin probe force microscopy(SKPFM)were used to investigate the effect of elements migration ofα-AlFeMnSi phase on micro-galvanic corrosion behavior of Al-Zn-Mg alloy.The simulation results showed that the average work function difference between theα-AlFeMnSi phase and Al matrix decreased from 0.232 to 0.065 eV due to the synchronous migration of elements Fe-Mn-Si.Specifically,as the elements Fe-Si migration during the extrusion process,the average Volta potential difference detected by SKPFM between theα-AlFeMnSi phase and Al matrix dropped down to 432.383 mV from 648.370 mV.Thus,the elements migration reduced the micro-galvanic corrosion sensitivity of Al-Zn-Mg alloy.To reach the calculated low micro-galvanic tendency betweenα-AlFeMnSi phase and Al matrix,the diffusion of Mn should be promoted during extruding process. 展开更多
关键词 Al-Zn-Mg alloy corrosion behavior α-AlFeMnSi phase first principles calculations
下载PDF
Understanding on corrosion mechanism of oxidized AZW800 alloy in 3.5 wt%NaCl solution 被引量:1
8
作者 Chunlong Cheng Qichi Le +4 位作者 Liang Chen Wenxin Hu Tong Wang Baosong Zhu Xiong Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1740-1753,共14页
Magnesium alloys are more widely used at higher temperatures.However,it is not well known whether oxide layer,produced at high temperature,could show corrosion protection.Thus,the corrosion behaviors of oxidized AZW80... Magnesium alloys are more widely used at higher temperatures.However,it is not well known whether oxide layer,produced at high temperature,could show corrosion protection.Thus,the corrosion behaviors of oxidized AZW800 alloy were investigated by hydrogen evolution and electrochemical measurements to evaluate effect of oxide layer on corrosion resistance.The results showed that corrosion of removed oxide layer AZW800 alloy showed characteristic of localized corrosion,leaving randomly bulky pits.While reserved oxide layer AZW800 alloy exhibited a relatively uniform corrosion.The results indicated that oxide layer could hinder corrosion of oxidized AZW800 alloy in the initial period of immersion.While subsequently,aggravated corrosion would occur owing to defects of oxide layer and less protective products film.Besides,present of oxide layer eliminated micro-galvanic couple on alloy surface.The synergistic effect of elimination of micro-galvanic couple on alloy surface and alkalization effect transforms localized corrosion into relatively uniform corrosion of alloys. 展开更多
关键词 AZW800 corrosion behavior Oxide layer EIS
下载PDF
Pitting Corrosion Behavior of Stainless Steel 304 in Carbon Dioxide Environments 被引量:11
9
作者 LI Guo-min GUO Xing-peng ZHENG Jia-shen 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2004年第4期47-51,共5页
With a rotating cylinder electrode apparatus, the polarization behaviors of the mild steel and the stainless steel 0Cr18Ni9 in NaHCO 3 (0.5 M)+Na 2CO 3 (0.5 M) solution with and without erodent particles were inves... With a rotating cylinder electrode apparatus, the polarization behaviors of the mild steel and the stainless steel 0Cr18Ni9 in NaHCO 3 (0.5 M)+Na 2CO 3 (0.5 M) solution with and without erodent particles were investigated and compared. The results show that the rotation speed of cylinder hardly affects the polarization behavior of sample in solution without particles but exerts a great influence on that with particles. Increasing rotation speed, the free corrosion potential shifts to positive direction and the oxygen limiting current density increases. Both the mild steel and stainless steel 0Cr18Ni9 experience a significant increase of the mass loss by increasing erosion, and erosive wear was dominated by severe micro-plowing. The insufficient mechanical strength of both materials leads to a low resistance to particle removal. Increasing peripheral velocities of the rotating cylinder enhances the corrosion rate of the mild steel. The stainless steel 0Cr18Ni9, due to a high erosive wear, also suffers from similar erosion-corrosion damage, despite that its corrosion resistance is much higher than that of the mild steel. 展开更多
关键词 steel EROSION corrosion polarization behavior rotation speed
下载PDF
Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process 被引量:7
10
作者 Masoud Sabzi Sadegh Moeini Far Saeid Mersagh Dezfuli 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第12期1431-1438,共8页
In this study, the effect of melting temperature on the microstructural evolutions, behavior, and corrosion morphology of Hadfield steel in the casting process is investigated. The mold was prepared by the sodium sili... In this study, the effect of melting temperature on the microstructural evolutions, behavior, and corrosion morphology of Hadfield steel in the casting process is investigated. The mold was prepared by the sodium silicate/CO_2 method, using a blind riser, and then the desired molten steel was obtained using a coreless induction furnace. The casting was performed at melting temperatures of 1350, 1400, 1450, and 1500°C, and the cast blocks were immediately quenched in water. Optical microscopy was used to analyze the microstructure, and scanning electron microscopy(SEM) and X-ray diffractrometry(XRD) were used to analyze the corrosion morphology and phase formation in the microstructure, respectively. The corrosion behavior of the samples was analyzed using a potentiodynamic polarization test and electrochemical impedance spectroscopy(EIS) in 3.5 wt% NaCl. The optical microscopy observations and XRD patterns show that the increase in melting temperature led to a decrease of carbides and an increase in the austenite grain size in the Hadfield steel microstructure. The corrosion tests results show that with increasing melting temperature in the casting process, Hadfield steel shows a higher corrosion resistance. The SEM images of the corrosion morphologies show that the reduction of melting temperature in the Hadfield steel casting process induced micro-galvanic corrosion conditions. 展开更多
关键词 Hadfield steel casting process melting temperature MICROSTRUCTURAL EVOLUTIONS corrosion behavior corrosion morphology
下载PDF
Effect of rare-earth element Sm on the corrosion behavior of Mg-6Al-1.2Y-0.9Nd alloy 被引量:11
11
作者 LI Quan’an,LI Xiaofeng,ZHANG Qing,and CHEN Jun School of Materials Science and Engineering,Henan University of Science and Technology,Luoyang 471003,China 《Rare Metals》 SCIE EI CAS CSCD 2010年第6期557-560,共4页
The effect of Sm(0 wt.%-2 wt.%) addition on the corrosion behavior of Mg-6Al-1.2Y-0.9Nd alloy in 3.5 wt.% NaCl solution has been studied by static corrosion tests,corrosion morphology observation,corrosion scale and... The effect of Sm(0 wt.%-2 wt.%) addition on the corrosion behavior of Mg-6Al-1.2Y-0.9Nd alloy in 3.5 wt.% NaCl solution has been studied by static corrosion tests,corrosion morphology observation,corrosion scale and microstructure analysis.The results show that,with the increasing of Sm content,the corrosion rate of the alloy decreases at first,then increases and reaches the valley at 0.5 wt.% Sm.The reason is that the proper content of Sm addition can refine the precipitates and make the component and microstructure uniform,and therefore,it remarkably improves the corrosion resistance of the alloy. 展开更多
关键词 magnesium alloys SAMARIUM corrosion behavior microstructure
下载PDF
Effects of chromium on the corrosion and electrochemical behaviors of ultra high strength steels 被引量:13
12
作者 Jin-yan Zhong Min Sun +2 位作者 Da-bo Liu Xiao-gang Li Tian-qi Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第3期282-289,共8页
The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steel... The effects of chromium on the corrosion and the electrochemical behaviors of ultra high strength steels were studied by the salt spray test and electrochemical methods. The results show that ultra high strength steels remain martensite structures and have anodic dissolution characteristic with an increase of chromium content. There is no typical passive region on the polarization curves of an ultra high strength stainless steel, AerMet 100 steel, and 300M steel. However, chromium improves the corrosion resistance of the stainless steel remarkably. It has the slowest corrosion rate in the salt spray test, one order of magnitude less than that of AerMet 100 and 300M steels. With the increase of chromium content, the polarization resistance becomes larger, the corrosion potential shifts towards the positive direction with a value of 545 mV, and the corrosion current density decreases in electrochemical measures in 3.5wt% NaCl solutions. Because of the higher content of chromium, the ultra high strength stainless steel has a better corrosion resistance than AerMet 100 and 300M steels. 展开更多
关键词 ultra high strength steel corrosion rate CHROMIUM electrochemical behavior
下载PDF
Effects of chitosan inhibitor on the electrochemical corrosion behavior of 2205 duplex stainless steel 被引量:7
13
作者 Se-fei Yang Ying Wen +2 位作者 Pan Yi Kui Xiao Chao-fang Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第11期1260-1266,共7页
The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, te... The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency(IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl_3 solution. 展开更多
关键词 INHIBITOR CHITOSAN STAINLESS steel corrosion behavior ELECTROCHEMISTRY
下载PDF
Formation and corrosion behavior of Fe-based amorphous metallic coatings prepared by detonation gun spraying 被引量:10
14
作者 周正 王鲁 +1 位作者 王富耻 柳彦博 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期634-638,共5页
Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of the... Amorphous metallic coatings with a composition of Fe48Cr15Mo14C15B6Y2 were prepared by detonation gun spraying process. Microstructural studies show that the coatings present a densely layered structure typical of thermally sprayed deposits with the porosity below 2%. Both crystallization and oxidation occurred obviously during spraying process, so that the amorphous fraction of the coatings decreased to 54% compared with fully amorphous alloy ribbons of the same component. Corrosion behavior of the amorphous coatings was investigated by electrochemical measurement. The results show that the coatings exhibit extremely wide passive region and low passive current density in 3.5% NaCl (mass fraction) and 1 mol/L HCl solutions, which illustrates excellent ability to resist localized corrosion. 展开更多
关键词 FE-BASED AMORPHOUS coating DETONATION GUN microstructure corrosion behavior
下载PDF
Crystalline texture evolution, control of the tribocorrosion behavior, and significant enhancement of the abrasion properties of a Ni-P nanocomposite coating enhanced by zirconia nanoparticles 被引量:7
15
作者 Masoud Sabzi Saeid Mersagh Dezfuli Zohre Balak 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第8期1020-1030,共11页
This paper describes an investigation of the effect of ZrO2 nanoparticles on the abrasive properties,crystalline texture developments,and tribocorrosion behavior of Ni-P nanostructured coatings.In the investigation,Ni... This paper describes an investigation of the effect of ZrO2 nanoparticles on the abrasive properties,crystalline texture developments,and tribocorrosion behavior of Ni-P nanostructured coatings.In the investigation,Ni-P and Ni-P-ZrO2 nanostructured coatings are deposited on St52 steel via the electroless method.Transmission electron microscopy(TEM),field emission scanning electron microscopy(FE-SEM),X-ray diffraction(XRD),energy dispersive spectroscopy(EDS),cyclic-static polarization tests in 3.5wt%NaCl solution,the tribocorrosion test(by back-and-forth wear in electrochemical cell),and the microhardness test using the Vickers method were performed to characterize and analyze the deposited coatings.The results of this study showed that the addition of ZrO2 nanoparticles to the Ni-P electroless bath produced the following:a sharp increase in wear and hardness resistance,the change of the wear mechanism from sheet to adhesive mode,the reduction of pitting corrosion resistance,significant reduction in the tribocorrosion protective properties,change in the preferred orientation of the crystalline texture coating from(111)to(200),increase in the sedimentation rate during the deposit process,and a sharp increase in the thickness of the Ni-P nanostructured coatings. 展开更多
关键词 NI-P nanocomposite coatings ZrO2 nanoparticles CRYSTALLINE texture corrosion resistance abrasive properties TRIBOcorrosion behavior
下载PDF
Corrosion behavior of aluminum alloys in Na_2SO_4 solution using the scanning electrochemical microscopy technique 被引量:8
16
作者 He-rong Zhou Xiao-gang Li +2 位作者 Chao-fang Dong Kui Xiao Tai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第1期84-88,共5页
The corrosion behavior of aluminum alloys 1060 and 2A12 in a 10 mM Na2SO4+5 mM KI solution was investigated by scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM). The potential topo... The corrosion behavior of aluminum alloys 1060 and 2A12 in a 10 mM Na2SO4+5 mM KI solution was investigated by scanning electrochemical microscopy (SECM) and scanning electron microscopy (SEM). The potential topography and corrosion morphology results show that the potential of the sample surface over the same area changes with the increase of immersion time. The corrosion area becomes large, and the potential becomes more negative. The corrosion potential of the 2A12 alloy surface is lower than that of 1060 aluminum, and 2A12 alloy becomes easily corrosive. This is the reason that preferential dissolution in the boundary region of some intermetallic particles (IMPs) occurs and different dissolution behaviors are associated with different types of IMPs because of different potentials. 展开更多
关键词 aluminum alloys corrosion behavior intermetallic particles scanning electrochemical microscopy (SECM)
下载PDF
Influence of Ca addition on microstructure,mechanical properties and corrosion behavior of Mg-2Zn alloy 被引量:5
17
作者 Hong-xiang Li Shi-kai Qin +4 位作者 Chang-lin Yang Ying-zhong Ma Jian Wang Yun-jin Liu Ji-shan Zhang 《China Foundry》 SCIE 2018年第5期363-371,共9页
The microstructure,mechanical properties and corrosion behaviors of as-cast ternary Mg-2Zn-x Ca(x=0,0.2,0.4,0.8)alloys have been investigated in this study.Results indicate that the microstructure of Mg-Zn-Ca alloys c... The microstructure,mechanical properties and corrosion behaviors of as-cast ternary Mg-2Zn-x Ca(x=0,0.2,0.4,0.8)alloys have been investigated in this study.Results indicate that the microstructure of Mg-Zn-Ca alloys can be significantly refined with increasing Ca concentration.Moreover,the alloys with different contents of Ca exhibit the different phases formation behaviors,i.e.α-Mg+Ca_2Mg_6Zn_3 phases for Mg-2Zn-0.2Ca and Mg-2Zn-0.4Ca alloys,andα-Mg+Ca_2Mg_6Zn_3+Mg_2Ca phases for Mg-2Zn-0.8Ca alloy,respectively.Among all the alloys,the maximum ultimate tensile strength and elongation(161 MPa and 9.1%)can be attained for the Mg-2Zn-0.2Ca alloy.Corrosion tests in Hanks’balanced salt solution indicated that Ca addition is detrimental to corrosion resistance of Mg-2Zn alloy.The relationship between as-cast microstructure and properties for different Ca-containing alloys is also discussed in detail. 展开更多
关键词 MAGNESIUM alloys Mg-Zn-Ca MICROSTRUCTURE mechanical properties corrosion behaviorS
下载PDF
Electrochemical behavior of microbiologically influenced corrosion on Fe_3Al in marine environment 被引量:5
18
作者 Xueting CHANG Shougang CHEN Guanhui GAO Yansheng YIN Sha CHENG Tao LIU 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第4期313-320,共8页
In this article, microbiologically influenced corrosion behavior of Fe3Al intermetallie compound in microorganism culture medium has been investigated by using weight loss methods, electrochemical techniques, and elec... In this article, microbiologically influenced corrosion behavior of Fe3Al intermetallie compound in microorganism culture medium has been investigated by using weight loss methods, electrochemical techniques, and electron microscopy. Polarization curves showed that a sharp electrical current peak caused by surface pitting could be observed after Fe3Al electrodes were immersed in culture medium for 15 days when the polarization potential was about -790 mV vs SCE. Based on the electrochemical impedance spectroscopy (EIS) and the equivalent circuit parameters of the associated system, the corrosion products were found to exhibit a two-layer structured feature and the microorganisms could induce pitting and erosion corrosion of the inner layer. In addition, the passivating film of the inner layer was absolutely destroyed by microbial metabolic products. 展开更多
关键词 Electrochemical behavior FE3AL Microbiologically influenced corrosion MARINE
下载PDF
Effect of cooling temperature on the microstructure and corrosion behavior of X80 pipeline steel 被引量:7
19
作者 Jing Ma Fan Feng +2 位作者 Bai-qing Yu Hai-feng Chen Li-feng Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第3期347-353,共7页
Dual-phase accelerated cooling(DPAC) was applied to X80 pipeline steel to obtain its microstructure with different amounts of bainite and ferrite. The microstructure, hardness, and polarization behaviors of the steel,... Dual-phase accelerated cooling(DPAC) was applied to X80 pipeline steel to obtain its microstructure with different amounts of bainite and ferrite. The microstructure, hardness, and polarization behaviors of the steel, cooled to different temperatures, were investigated. Results showed that, with decreasing cooling temperature, the amount of polygon ferrite(PF) increased while that of acicular ferrite(AF) decreased. The amount of bainite correspondingly decreased, except when cooled to 760°C. Moreover, the grain size of ferrite increased. The corrosion behaviors of different phases were distinct. Martensite/austenite(M/A) islands presented at the grain boundary of the PF phase caused small pits. Numerous micro-corrosion cells were formed in the AF and bainite phases, where micropores were prone to form. X80 pipeline steel cooled to 700°C had the best corrosion resistance in the simulated seawater. The decreased amount of the PF phase reduced the area of cathode, resulting in slight corrosion. About 40 vol% of the bainite phase provided strength while the PF phase provided adequate ductility to the X80 steel. It was concluded that the appropriate cooling temperature was 700°C for ideal corrosion resistance and mechanical properties. 展开更多
关键词 X80 pipeline steel Dual-phase accelerated cooling MICROSTRUCTURE corrosion behavior
下载PDF
Corrosion behavior of Mg-Zn-Ca amorphous alloys with Nd addition in simulated body fluids 被引量:5
20
作者 Qin Chunling Xiao Tongna +4 位作者 Li Yongyan Wang Zhifeng Liu Li Xiong Hanqing Zhao Weimin 《China Foundry》 SCIE CAS 2014年第6期503-509,共7页
The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body f luids(SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were det... The effects of Nd addition on corrosion behavior of Mg66Zn30Ca4 amorphous alloys in simulated body f luids(SBF) were studied in this paper. Electrochemical properties of the samples before and after corrosion were determined. Surface morphologies of samples after immersion in SBF at 37℃ for different times were observed under scanning electron microscope(SEM). Results show that the corrosion resistance of Mg-based alloys in SBF is improved with the addition of Nd element. The electrochemical properties indicate that microalloying Nd element to the alloys leads to an ennoblement in the open circuit potentials of the alloys and a decrease in the anodic current density in SBF, especially for the Mg66-xZn30Ca4 Ndx alloys with Nd content of 1.0at.%-1.5at.%. It was observed that the surface morphologies of the alloys immersed in SBF change with the Nd addition. A f lakelike structure parallel to the alloy substrate formed on the surface of 1.0at.% Nd-containing alloy immersed in SBF for 7 days improves the corrosion resistance of the amorphous alloys by blocking the corrosion liquid from attacking the alloys. 展开更多
关键词 Mg alloy amorphous alloy corrosion behavior SBF electrochemical measurements
下载PDF
上一页 1 2 103 下一页 到第
使用帮助 返回顶部