Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na...Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.展开更多
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp...The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.展开更多
Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field...Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at Eo = 2.6 V/μm, attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/#m. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron mi- croscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation.展开更多
Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reserv...Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.展开更多
Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have ...Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.展开更多
The key to the wavelet based denoising teehniquea is how to manipulate the wavelet coefficients. By referring to the idea of Inclusive-OR in the design of circuits, this paper proposes a new algorithm called wavelet d...The key to the wavelet based denoising teehniquea is how to manipulate the wavelet coefficients. By referring to the idea of Inclusive-OR in the design of circuits, this paper proposes a new algorithm called wavelet domain Inclusive-OR denoising algorithm(WDIDA), which distinguishes the wavelet coefficients belonging to image or noise by considering their phases and modulus maxima simultaneously. Using this new algorithm, the denoising effects are improved and the computation time is reduced. Furthermore, in order to enhance the edges of the image but not magnify noise, a contrast nonlinear enhancing algorithm is presented according to human visual properties. Compared with traditional enhancing algorithms, the algorithm that we proposed has a better noise reducing performanee , preserving edges and improving the visual quality of images.展开更多
Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-aSsorption properties. The morphology, heat-resistance, electromagnetic properties and mic...Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-aSsorption properties. The morphology, heat-resistance, electromagnetic properties and microwave absorption of raw-CIPs and silica-coated CIPs are investigated using a scanning electron microscope, an energy dispersive spectrometer, a thermal-gravimetric analyzer, and a network analyzer. The results show that the heat-resistance of silica-coated CIPs is better than that of raw CIFs. The reflection losses exceeding -lOdB of silica-coated CIPs are obtained in the frequency range 9.5-12.4 GHz for the absorber thickness of 2.3 mm, and the same reflection losses of uncoated CIPs reach the data in the lower frequency range for the same thickness. The enhanced microwave absorption of silica-coated CIPs can be ascribed to the combination of proper electromagnetic impedance match and the decrease of dielectric permittivity.展开更多
SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR...SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.展开更多
Equal-channel angular pressing(ECAP) of an enhanced solid-solution treated 2024 Al alloy was successfully performed at room temperature, with an imposed equivalent normal strain of about 0.5. A very high hardness abou...Equal-channel angular pressing(ECAP) of an enhanced solid-solution treated 2024 Al alloy was successfully performed at room temperature, with an imposed equivalent normal strain of about 0.5. A very high hardness about HV191 and yield strength about 610 MPa (30% higher than those of the unECAPed 2024 Al alloy) in terms of commercial aluminum alloys were observed for the ECAPed 2024 Al alloy. In addition to the strengthening, this process allows the ECAPed 2024 Al alloy have a moderate level of tensile ductility (about 12.7%) and a significant strain hardening capability up to tensile failure. After aged at 373 K for 48 h, the ECAPed alloy increases its hardness (about HV201) and tensile ductility (about 14 %) further. The TEM results show that the ECAPed 2024 Al alloy presents a plate structure (about 50-100 nm) with high density of dislocation and additional thin plate (approximately <10 nm= inside. The XRD results show that the ECAP processing decreases the texture and increases the dislocation density of the alloy considerably. The theoretical calculations show that the increase of dislocation density resulting from ECAP processing makes a considerable contribution about 55.2 % for the improvement of yield strength.展开更多
A new method for preparation of hard TiN films has been developed by using electron beam evaporation-deposition of Ti and bombardment with 40 keV Xe^+ ion beam in a N_2 gas environment.The synthesized TiN films were s...A new method for preparation of hard TiN films has been developed by using electron beam evaporation-deposition of Ti and bombardment with 40 keV Xe^+ ion beam in a N_2 gas environment.The synthesized TiN films were superior to PVD and CVD ones in respects of improved adhesion to substrate and low preparing temperature.They exhibited good wear resistance and high hardness up to 2200 kg/mm^2.Some industrial applications have been reported.展开更多
A single-channel speech enhancement method of noisy speech signals at very low signal-to-noise ratios is presented, which is based on masking properties of the human auditory system and power spectral density estimati...A single-channel speech enhancement method of noisy speech signals at very low signal-to-noise ratios is presented, which is based on masking properties of the human auditory system and power spectral density estimation of non stationary noise. It allows for an automatic adaptation in time and frequency of the parametric enhancement system, and finds the best tradeoff among the amount of noise reduction, the speech distortion, and the level of musical residual noise based on a criterion correlated with perception and SNR. This leads to a significant reduction of the unnatural structure of the residual noise. The results with several noise types show that the enhanced speech is more pleasant to a human listener.展开更多
Bi1-xTbxFeO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD pattern...Bi1-xTbxFeO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD patterns. The substitution of Tb^3+ ions to Bi^3+ decreases the particle size and enhances the ferromagnetic properties of this system. Interestingly a large maximum magnetization value of 1.73emu/g at 50kOe can be observed in 1% Tb-doped sample at 300 K. The decrease in band gap may result from the reduced particle size, while the leakage current density also decreases, which is mainly explained by the variation of oxygen vacancies.展开更多
Coupling of a phase transition to electron and phonon transports provides extra degree of freedom to improve the thermoelectric performance, while the pertinent experimental and theoretical studies are still rare. Par...Coupling of a phase transition to electron and phonon transports provides extra degree of freedom to improve the thermoelectric performance, while the pertinent experimental and theoretical studies are still rare. Particularly,the impaction of chemical compositions and phase transition characters on the abnormal thermoelectric properties across phase transitions are largely unclear. Herein, by varying the Cu content x from 1.75 to 2.10, we systemically investigate the crystal structural evolution, phase transition features, and especially the thermoelectric properties during the phase transition for Cu_(x)Se. It is found that the addition of over-stoichiometry Cu in Cu_(x)Se could alter the phase transition characters and suppress the formation of Cu vacancies. The critical scatterings of phonons and electrons during phase transitions strongly enhance the Seebeck coefficient and diminish the thermal conductivity, leading to an ultrahigh dimensionless thermoelectric figure of merit of ~1.38 at 397 K in Cu_(2.10)Se.With the decreasing Cu content, the critical electron and phonon scattering behaviors are mitigated, and the corresponding thermoelectric performances are reduced. This work offers inspirations for understanding and tuning the thermoelectric transport properties during phase transitions.展开更多
Carbon fiber reinforced dual-matrix composites(CHM)including carbon fiber reinforced hydroxyapatite-polymer matrix composites(CHMP)and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites(CHMC)hav...Carbon fiber reinforced dual-matrix composites(CHM)including carbon fiber reinforced hydroxyapatite-polymer matrix composites(CHMP)and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites(CHMC)have great potential application in the field of artificial hip joints,where a combination of high mechanical strength and excellent biotribological property are required.In this work,the graphene-silicon nitride nanowires(Graphene-Si_(3)N_(4)nws)interlocking interfacial enhancement were designed and constructed into CHM for boosting the mechanical and biotribological properties.The graphene and Si_(3)N_(4)nws interact with each other and construct interlocking interfacial enhancement.Benefiting from the Graphene-Si_(3)N_(4)nws synergistic effect and interlocking enhancement mechanism,the mechanical and biotribological properties of CHM were promoted.Compared with CHMP,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMP were increased by 80.0% and 61.5%,respectively.The friction coefficient and wear rate were reduced by 52.8% and 52.9%,respectively.Compared with CHMC,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMC were increased by 145.4% and 64.2%.The friction coefficient and wear rate were decreased by 52.3% and 73.6%.Our work provides a promising methodology for preparing Graphene-Si_(3)N_(4)nws reinforced CHM with more reliable mechanical and biotribological properties for use in artificial hip joints.展开更多
Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo- ration technique. The optical properties of rubrene thin film are investigated in a spectral range ...Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo- ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (a) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the mbrene thin film is observed to be at 563 nm (2.21 eV). With the use ofAg NPs which are fabricated by radio-frequency (RF) rnagnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.展开更多
Zinc oxide has a large energy gap and thus it has potential application in the field of solar cells by tuning the absorption of sunlight. In order to enhance its absorption of sunlight,dark color zinc oxides have been...Zinc oxide has a large energy gap and thus it has potential application in the field of solar cells by tuning the absorption of sunlight. In order to enhance its absorption of sunlight,dark color zinc oxides have been prepared by traditional hydrothermal method directly using a zinc foil as both source and substrate. We found that we could tune the optical properties of ZnO samples by changing the temperature. In particular, increasing temperature could significantly reduce the reflectivity of solar energy in the visible range. We speculate that the phenomenon is relevant to the sharp cone morphology of the ZnO nanorods grown on the surface of Zn foils, which furthermore enhance refraction and reflection of light in the nanorods. The capacity to improve the light absorption of ZnO may have a bright application in raising the efficiency of solar cells.展开更多
Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For...Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For the first time,the quasi-static uniaxial compression performance of fused filament fabricated re-entrant diamond auxetic metamaterial is evaluated in the x-direction(in-plane)and z-direction(out-of-plane).The most commonly used thermoplastic feedstock,Acrylonitrile butadiene styrene,is considered a material of choice.The effect of influential geometrical parameters of the re-entrant diamond structure and printing parameter is systematically studied using Taguchi’s design of experiments.Grey-based multi-objective optimisation technique has been adopted to arrive at the optimal structure.Efforts are made to improve the stiffness and strength of the structure with fibre reinforcements.Micro glass fibre reinforcements have enhanced specific strength and stiffness in both in-plane and out-ofplane directions.A sevenfold and thirteen times increase in specific strength and energy absorption is evident for glass fibre-reinforced structures in out-of-plane directions compared to in-plane ones.Proper tuning of geometrical parameters of the re-entrant diamond structure can result in a Poisson’s ratio of up to-3.49 when tested in the x-direction.The parametric study has illustrated the tailorability of the structure according to the application requirements.The statistical study has signified each considered parameter’s contribution to the compression performance characteristics of the 3D printed re-entrant diamond auxetic metamaterial.展开更多
The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this pap...The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.展开更多
Organic–inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX_3...Organic–inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX_3(A = CH_3NH_3; B = Sn,Pb; X = Cl, Br, I) and provide the best absorber among ABX_3 when the organic framework A is CH_3NH_3 by first-principles calculations. The results reveal that the valence band maximum(VBM) of the ABX_3 is mainly composed of anion X p states and that conduction band minimum(CBM) of the ABX_3 is primarily composed of cation B p states. The bandgap of the ABX_3 decreases and the absorptive capacities of different wavelengths of light expand when reducing the size of the organic framework A, changing the B atom from Pb to Sn, and changing the X atom from Cl to Br to I. Finally, based on our calculations, it is discovered that CH_3NH_3 Sn I_3has the best optical properties and its light-adsorption range is the widest among all the ABX_3 compounds when A is CH_3NH_3. All these results indicate that the electronegativity difference between X and B plays a fundamental role in changing the energy gap and optical properties among ABX_3 compounds when A remains the same and that CH_3NH_3 Sn I_3 is a promising perovskite absorber in the high efficiency solar batteries among all the CH_3NH_3BX_3 compounds.展开更多
基金supported by the National Natural Science Foundation of China(32271413 and 32271408)the National Basic Research Program of China(2021YFA1201404)+2 种基金the Natural Science Foundation of Jiangsu Province(BK20232023)the Science Program of Jiangsu Province Administration for Market Regulation(KJ2024010)the Jiangsu Provincial Key Medical Center Foundation,and the Jiangsu Provincial Medical Outstanding Talent Foundation.
文摘Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration.
基金the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China (No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively.
基金Supported by the National Natural Science Foundation of China under Grant No 11405114the Natural Science Foundation of Shanxi Province under Grant No 2015021065
文摘Cu ion implantation and subsequent rapid annealing at 500℃ in N2 result in low surface resistivity of 1.611 ohm/sq with high mobility of 290 cm2 V-1S-1 for microcrystalline diamond (MCD) films. Its electrical field emission behavior can be turned on at Eo = 2.6 V/μm, attaining a current density of 19.5μA/cm2 at an applied field of 3.5 V/#m. Field emission scanning electron microscopy combined with Raman and x-ray photoelectron mi- croscopy reveal that the formation of Cu nanoparticles in MCD films can catalytically convert the less conducting disorder/a-C phases into graphitic phases and can provoke the formation of nanographite in the films, forming conduction channels for electron transportation.
基金the financial support provided by Council for Scientific and Industrial Research [22(0649)/13/EMR-II], New Delhi, to the Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
文摘Surfactants for enhanced oil recovery are important to study due to their special characteristics like foam generation,lowering interfacial tension between oleic and aqueous phases,and wettability alteration of reservoir rock surfaces.Foam is a good mobility control agent in enhanced oil recovery for improving the mobility ratio.In the present work,the foaming behavior of three nonionic ethoxylated surfactants,namely Tergitol 15-S-7,Tergitol 15-S-9,and Tergitol 15-S-12,was studied experimentally.Among the surfactants,Tergitol 15-S-12 shows the highest foamability.The effect of Na Cl concentration and synthetic seawater on foaming behavior of the surfactants was investigated by the test-tube shaking method.The critical micelle concentrations of aqueous solutions of the different nonionic surfactants were measured at 300 K.It was found that the critical micelle concentrations of all surfactants also increased with increasing ethylene oxide number.Dynamic light scattering experiments were performed to investigate the micelle sizes of the surfactants at their respective critical micelle concentrations.Core flooding experiments were carried out in sand packs using the surfactant solutions.It was found tha t22% additional oil was recovered in the case of all the surfactants over secondary water flooding.Tergitol 15-S-12exhibited the maximum additional oil recovery which is more than 26%after water injection.
基金supported by the National Natural Science Foundation of China(52074320)Petrochina Strategic Cooperation Science and Technology Project(ZLZX2020-01-04-03)。
文摘Janus amphiphilic polymer nanosheets(JAPNs)with anisotropic morphology and distinctive perfor-mance have aroused widespread interest.However,due to the difficulty in synthesis and poor dispersion stability,JAPNs have been scarcely reported in the field of enhancing oil recovery(EOR).Herein,a kind of organic-based flexible JAPNs was prepared by paraffin emulsion methods.The lateral sizes of JAPNs were ranging from hundreds of nanometers to several micrometers and the thickness was about 3 nm.The organic-based nanosheets were equipped with remarkably flexible structures,which could improve their injection performance.The dispersion and interfacial properties of JAPNs were studied systematically.By modification of crosslinking agent containing multiple amino groups,the JAPNs had excellent hydro-philicity and salt resistance compared with conventional inorganic or composite nanosheets.The settling time of nanosuspension with NaCl and CaCl_(2) at a low salinity of 1000 mg/L was over 240 h.The value could also remain 124 h under the salinity of 10,000 mg/L NaCl.With the dual functionalities of Janus amphiphilic nature and nanoparticles'Pickering effect,JAPNs could change rock wettability and form emulsions as"colloidal surfactants",In particular,a new technology called optical microrheology was pioneered to explore the destabilization state of nanosuspensions for the first time.Since precipitation lagged behind aggregation,especially for stable suspension systems,the onset of the unstable behavior was difficult to be detected by conventional methods,which should be the indicator of reduced effec-tiveness for nanofluid products.In addition,the oil displacement experiments demonstrated that the JAPNs could enhance oil recovery by 17.14%under an ultra-low concentration of 0.005%and were more suitable for low permeability cores.The findings can help for a better understanding of the material preparation of polymer nanosheets.We also hope that this study could shed more light on the nano-flooding technology for EOR.
文摘The key to the wavelet based denoising teehniquea is how to manipulate the wavelet coefficients. By referring to the idea of Inclusive-OR in the design of circuits, this paper proposes a new algorithm called wavelet domain Inclusive-OR denoising algorithm(WDIDA), which distinguishes the wavelet coefficients belonging to image or noise by considering their phases and modulus maxima simultaneously. Using this new algorithm, the denoising effects are improved and the computation time is reduced. Furthermore, in order to enhance the edges of the image but not magnify noise, a contrast nonlinear enhancing algorithm is presented according to human visual properties. Compared with traditional enhancing algorithms, the algorithm that we proposed has a better noise reducing performanee , preserving edges and improving the visual quality of images.
文摘Silica-coated carbonyl iron particles (CIPs) are fabricated with the Stober method to improve their heat-resistance and wave-aSsorption properties. The morphology, heat-resistance, electromagnetic properties and microwave absorption of raw-CIPs and silica-coated CIPs are investigated using a scanning electron microscope, an energy dispersive spectrometer, a thermal-gravimetric analyzer, and a network analyzer. The results show that the heat-resistance of silica-coated CIPs is better than that of raw CIFs. The reflection losses exceeding -lOdB of silica-coated CIPs are obtained in the frequency range 9.5-12.4 GHz for the absorber thickness of 2.3 mm, and the same reflection losses of uncoated CIPs reach the data in the lower frequency range for the same thickness. The enhanced microwave absorption of silica-coated CIPs can be ascribed to the combination of proper electromagnetic impedance match and the decrease of dielectric permittivity.
文摘SiNx:H films with different N/Si ratios are synthesized by plasma-enhanced chemical vapor deposition (PECVD). Composition and structure characteristics are detected by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It indicates that Si-N bonds increase with increased NH3/SiH4 ratio. Electrical property investigations by I-V measurements show that the prepared films offer higher resistivity and less leakage current with increased N/Si ratio and exhibit entirely insulating properties when N/Si ratio reaches 0.9, which is ascribed to increased Si-N bonds achieved.
基金Project(02KJD460004) supported by the Natural Science Foundation of Jiangsu Province, China
文摘Equal-channel angular pressing(ECAP) of an enhanced solid-solution treated 2024 Al alloy was successfully performed at room temperature, with an imposed equivalent normal strain of about 0.5. A very high hardness about HV191 and yield strength about 610 MPa (30% higher than those of the unECAPed 2024 Al alloy) in terms of commercial aluminum alloys were observed for the ECAPed 2024 Al alloy. In addition to the strengthening, this process allows the ECAPed 2024 Al alloy have a moderate level of tensile ductility (about 12.7%) and a significant strain hardening capability up to tensile failure. After aged at 373 K for 48 h, the ECAPed alloy increases its hardness (about HV201) and tensile ductility (about 14 %) further. The TEM results show that the ECAPed 2024 Al alloy presents a plate structure (about 50-100 nm) with high density of dislocation and additional thin plate (approximately <10 nm= inside. The XRD results show that the ECAP processing decreases the texture and increases the dislocation density of the alloy considerably. The theoretical calculations show that the increase of dislocation density resulting from ECAP processing makes a considerable contribution about 55.2 % for the improvement of yield strength.
文摘A new method for preparation of hard TiN films has been developed by using electron beam evaporation-deposition of Ti and bombardment with 40 keV Xe^+ ion beam in a N_2 gas environment.The synthesized TiN films were superior to PVD and CVD ones in respects of improved adhesion to substrate and low preparing temperature.They exhibited good wear resistance and high hardness up to 2200 kg/mm^2.Some industrial applications have been reported.
文摘A single-channel speech enhancement method of noisy speech signals at very low signal-to-noise ratios is presented, which is based on masking properties of the human auditory system and power spectral density estimation of non stationary noise. It allows for an automatic adaptation in time and frequency of the parametric enhancement system, and finds the best tradeoff among the amount of noise reduction, the speech distortion, and the level of musical residual noise based on a criterion correlated with perception and SNR. This leads to a significant reduction of the unnatural structure of the residual noise. The results with several noise types show that the enhanced speech is more pleasant to a human listener.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11004148,51074112,and 11104202the Natural Science Foundation of Guangxi Province under Grant No 2012GXNSFGA060002
文摘Bi1-xTbxFeO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles are synthesized by the sol-gel method. A single phase perovskite rhombohedral structure of all the samples is established from the Rietveld refined XRD patterns. The substitution of Tb^3+ ions to Bi^3+ decreases the particle size and enhances the ferromagnetic properties of this system. Interestingly a large maximum magnetization value of 1.73emu/g at 50kOe can be observed in 1% Tb-doped sample at 300 K. The decrease in band gap may result from the reduced particle size, while the leakage current density also decreases, which is mainly explained by the variation of oxygen vacancies.
基金Supported by the National Key Research and Development Program of China (Grant No. 2018YFB0703600)the National Natural Science Foundation of China (Grant Nos. 91963208, 51625205, 51961135106, and 51902199)+2 种基金Shanghai Government (Grant No. 20JC1415100)the CAS-DOE Program of Chinese Academy of Sciences (Grant No. 121631KYSB20180060)the Shanghai Sailing Program (Grant No. 19YF1422800)。
文摘Coupling of a phase transition to electron and phonon transports provides extra degree of freedom to improve the thermoelectric performance, while the pertinent experimental and theoretical studies are still rare. Particularly,the impaction of chemical compositions and phase transition characters on the abnormal thermoelectric properties across phase transitions are largely unclear. Herein, by varying the Cu content x from 1.75 to 2.10, we systemically investigate the crystal structural evolution, phase transition features, and especially the thermoelectric properties during the phase transition for Cu_(x)Se. It is found that the addition of over-stoichiometry Cu in Cu_(x)Se could alter the phase transition characters and suppress the formation of Cu vacancies. The critical scatterings of phonons and electrons during phase transitions strongly enhance the Seebeck coefficient and diminish the thermal conductivity, leading to an ultrahigh dimensionless thermoelectric figure of merit of ~1.38 at 397 K in Cu_(2.10)Se.With the decreasing Cu content, the critical electron and phonon scattering behaviors are mitigated, and the corresponding thermoelectric performances are reduced. This work offers inspirations for understanding and tuning the thermoelectric transport properties during phase transitions.
基金This work was supported by the National Natural Science Foundation of China under Grant No.51872232,the Key Scientific and Technological Innovation Research Team of Shaanxi Province(2022TD-31)the Key R&D Program of Shaanxi Province(2021ZDLGY14-04)+2 种基金the National Training Program of Innovation and Entrepreneurship for Undergraduates(Grand No.XN2022023)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2067)the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(Grant No.136-QP-2015).
文摘Carbon fiber reinforced dual-matrix composites(CHM)including carbon fiber reinforced hydroxyapatite-polymer matrix composites(CHMP)and carbon fiber reinforced hydroxyapatite-pyrolytic carbon matrix composites(CHMC)have great potential application in the field of artificial hip joints,where a combination of high mechanical strength and excellent biotribological property are required.In this work,the graphene-silicon nitride nanowires(Graphene-Si_(3)N_(4)nws)interlocking interfacial enhancement were designed and constructed into CHM for boosting the mechanical and biotribological properties.The graphene and Si_(3)N_(4)nws interact with each other and construct interlocking interfacial enhancement.Benefiting from the Graphene-Si_(3)N_(4)nws synergistic effect and interlocking enhancement mechanism,the mechanical and biotribological properties of CHM were promoted.Compared with CHMP,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMP were increased by 80.0% and 61.5%,respectively.The friction coefficient and wear rate were reduced by 52.8% and 52.9%,respectively.Compared with CHMC,the shear and compressive strengths of Graphene-Si_(3)N_(4)nws reinforced CHMC were increased by 145.4% and 64.2%.The friction coefficient and wear rate were decreased by 52.3% and 73.6%.Our work provides a promising methodology for preparing Graphene-Si_(3)N_(4)nws reinforced CHM with more reliable mechanical and biotribological properties for use in artificial hip joints.
基金Project supported by the Funding for the Development Project of Beijing Municipal Education Commission of Science and Technology,China(Grant No.KZ201410005008)the Natural Science Foundation of Beijing City,China(Grant No.4102014)the Graduate Science Fund of the Beijing University of Technology,China(Grant No.ykj-2013-9835)
文摘Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo- ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm-1600 nm. The analysis of the absorption coefficient (a) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the mbrene thin film is observed to be at 563 nm (2.21 eV). With the use ofAg NPs which are fabricated by radio-frequency (RF) rnagnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.
基金supported by the National Natural Science Foundation of China(No.11575187)the National Key Research and Development Program(No.2016YFB0700205)
文摘Zinc oxide has a large energy gap and thus it has potential application in the field of solar cells by tuning the absorption of sunlight. In order to enhance its absorption of sunlight,dark color zinc oxides have been prepared by traditional hydrothermal method directly using a zinc foil as both source and substrate. We found that we could tune the optical properties of ZnO samples by changing the temperature. In particular, increasing temperature could significantly reduce the reflectivity of solar energy in the visible range. We speculate that the phenomenon is relevant to the sharp cone morphology of the ZnO nanorods grown on the surface of Zn foils, which furthermore enhance refraction and reflection of light in the nanorods. The capacity to improve the light absorption of ZnO may have a bright application in raising the efficiency of solar cells.
文摘Auxetic materials are cellular materials with a unique property of negative Poisson’s ratio.The auxeticity and performance of these metamaterials utterly depend on the geometrical parameters and loading direction.For the first time,the quasi-static uniaxial compression performance of fused filament fabricated re-entrant diamond auxetic metamaterial is evaluated in the x-direction(in-plane)and z-direction(out-of-plane).The most commonly used thermoplastic feedstock,Acrylonitrile butadiene styrene,is considered a material of choice.The effect of influential geometrical parameters of the re-entrant diamond structure and printing parameter is systematically studied using Taguchi’s design of experiments.Grey-based multi-objective optimisation technique has been adopted to arrive at the optimal structure.Efforts are made to improve the stiffness and strength of the structure with fibre reinforcements.Micro glass fibre reinforcements have enhanced specific strength and stiffness in both in-plane and out-ofplane directions.A sevenfold and thirteen times increase in specific strength and energy absorption is evident for glass fibre-reinforced structures in out-of-plane directions compared to in-plane ones.Proper tuning of geometrical parameters of the re-entrant diamond structure can result in a Poisson’s ratio of up to-3.49 when tested in the x-direction.The parametric study has illustrated the tailorability of the structure according to the application requirements.The statistical study has signified each considered parameter’s contribution to the compression performance characteristics of the 3D printed re-entrant diamond auxetic metamaterial.
基金supported by the National Natural Science Foundation of China(Nos.12002031,12122202U22B2083)+1 种基金the China Postdoctoral Science Foundation(Nos.BX2021038 and 2021M700428)the National Key Research and Development of China(No.2022YFB4601901)。
文摘The Schwarz primitive triply periodic minimal surface(P-type TPMS)lattice structures are widely used.However,these lattice structures have weak load-bearing capacity compared with other cellular structures.In this paper,an adaptive enhancement design method based on the non-uniform stress distribution in structures with uniform thickness is proposed to design the P-type TPMS lattice structures with higher mechanical properties.Two types of structures are designed by adjusting the adaptive thickness distribution in the TPMS.One keeps the same relative density,and the other keeps the same of non-enhanced region thickness.Compared with the uniform lattice structure,the elastic modulus for the structure with the same relative density increases by more than 17%,and the yield strength increases by more than 10.2%.Three kinds of TPMS lattice structures are fabricated by laser powder bed fusion(L-PBF)with 316L stainless steel to verify the proposed enhanced design.The manufacture-induced geometric deviation between the as-design and as-printed models is measured by micro X-ray computed tomography(μ-CT)scans.The quasi-static compression experimental results of P-type TPMS lattice structures show that the reinforced structures have stronger elastic moduli,ultimate strengths,and energy absorption capabilities than the homogeneous P-TPMS lattice structure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61366007,11164032,and 61066005)the Program for New Century Excellent Talents in University of Ministry of Education of China(Grant No.NCET-12-1080)+1 种基金the Basic Applied Research Foundation of Yunnan Province,China(Grant Nos.2011CI003 and 2013FB007)the Excellent Young Talents in Yunnan University,China
文摘Organic–inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX_3(A = CH_3NH_3; B = Sn,Pb; X = Cl, Br, I) and provide the best absorber among ABX_3 when the organic framework A is CH_3NH_3 by first-principles calculations. The results reveal that the valence band maximum(VBM) of the ABX_3 is mainly composed of anion X p states and that conduction band minimum(CBM) of the ABX_3 is primarily composed of cation B p states. The bandgap of the ABX_3 decreases and the absorptive capacities of different wavelengths of light expand when reducing the size of the organic framework A, changing the B atom from Pb to Sn, and changing the X atom from Cl to Br to I. Finally, based on our calculations, it is discovered that CH_3NH_3 Sn I_3has the best optical properties and its light-adsorption range is the widest among all the ABX_3 compounds when A is CH_3NH_3. All these results indicate that the electronegativity difference between X and B plays a fundamental role in changing the energy gap and optical properties among ABX_3 compounds when A remains the same and that CH_3NH_3 Sn I_3 is a promising perovskite absorber in the high efficiency solar batteries among all the CH_3NH_3BX_3 compounds.