Removing hydrogen sulfide(H_(2)S)via the selective oxidation has been considered an effective way to further purify the indusial sulfurcontaining due to it can completely transform residual H_(2)S into elemental sulfu...Removing hydrogen sulfide(H_(2)S)via the selective oxidation has been considered an effective way to further purify the indusial sulfurcontaining due to it can completely transform residual H_(2)S into elemental sulfur.While N-doped porous carbon was applied to H_(2)S selective oxidation,a sustainable methodology for the synthesis of efficient and stable N-doped carbon catalysts remains a difficulty,limiting its future development in large-scale applications.Herein,we present porous,honeycomb-like N-doped carbon catalysts with large specific surface areas,high pyridinic N content,and numerous structural defects for H_(2)S selective oxidation prepared using reusable NaCl as the template.The asprepared NC-10-800 catalyst exhibits excellent catalytic performance(sulfur formation rate of 784 g_(sulfur) kg_(cat.)^(-1) h^(-1)),outstanding stability(>100 h),and excellent anti-water vapor,anti-CO_(2) and anti-oxidation properties,suggesting significant potential for practical industrial application.The characterization results and kinetic study demonstrate that the large surface areas and structural defects created by the molten salt at high temperature enhance the exposure of pyridinic N sites and thus accelerate the catalytic activity.Importantly,the water-soluble NaCl template could be easily washed from the carbon nanomaterials,and thus the downstream salt-containing wastewater could be subsequently reused for the dissolution of carbon precursors.This environment-friendly,low-cost,reusable salt-template strategy has significant implications for the development of N-doped carbon catalysts for practical applications.展开更多
Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have emerged as perfect platforms for developing applications in nano-electronics,catalysis,energy storage and environmental-related fields due to their superi...Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have emerged as perfect platforms for developing applications in nano-electronics,catalysis,energy storage and environmental-related fields due to their superior properties.However,the low-cost,batch production of high-quality 2D TMDCs remains a huge challenge with the existing synthetic strategies.Herein,we present a scalable chemical vapor deposition(CVD)approach for the batch production of high-quality MoS_(2) nanosheet powders,by using naturally abundant,water-soluble and recyclable NaCl crystal powders as templates.The high-quality MoS_(2) nanosheets powders are achieved by a facile water dissolution-filtration process,by virtue of the excellent dispersibility of the as-grown products in water.The internal mechanism for the scalable synthesis strategy is explored.The applications of the MoS_(2) nanosheets powders are also demonstrated as catalysts or adsorbents in hydrogen evolution reaction(HER)and organic dyes adsorption,respectively.This work should hereby pave ways for the mass production and application of powdery TMDCs in energetic and environmental related fields.展开更多
Carbon materials are considered to be one of the most promising anode materials for sodium-ion batteries(SIBs),but the well-ordered graphitic structure limits the intercalation of sodium ions.Besides,the sluggish inte...Carbon materials are considered to be one of the most promising anode materials for sodium-ion batteries(SIBs),but the well-ordered graphitic structure limits the intercalation of sodium ions.Besides,the sluggish intercalation kinetics of sodium ions impedes the rate performance.Thus,the precise structure control of carbon materials is important to improve the battery performance.Herein,a 3D porous hard-soft composite carbon(3DHSC)was prepared using the NaCl as the template and phenolic resin and pitch as carbon precursors.The NaCl template restrains the growth of the graphite crystallite during the carbonization process,resulting in small graphitic domains with expanded interlayer spacing which is favorable for the sodium storage.Moreover,the Na Cl templates help to create abundant mesopores and macropores for fast sodium ion diffusion.The porous structure and the graphite crystalline structure can be precisely controlled by simply adjusting the mass ratio of Na Cl,and thus,the suitable structure can be prepared to reach high capacity and rate performance while keeping a relatively high Coulombic efficiency.Typically,a high reversible capacity(215 mA h g^(-1)at 0.05 A g^(-1)),an excellent rate capability(97 mA h g^(-1)at 5 A g^(-1)),and a high initial Coulombic efficiency(60%)are achieved.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFC3701900)National Natural Science Foundation of China(Nos.21606243)+1 种基金LiaoNing Revitalization Talents Program(XLYC1907053)Dalian National Laboratory for Clean Energy(DNL202021).
文摘Removing hydrogen sulfide(H_(2)S)via the selective oxidation has been considered an effective way to further purify the indusial sulfurcontaining due to it can completely transform residual H_(2)S into elemental sulfur.While N-doped porous carbon was applied to H_(2)S selective oxidation,a sustainable methodology for the synthesis of efficient and stable N-doped carbon catalysts remains a difficulty,limiting its future development in large-scale applications.Herein,we present porous,honeycomb-like N-doped carbon catalysts with large specific surface areas,high pyridinic N content,and numerous structural defects for H_(2)S selective oxidation prepared using reusable NaCl as the template.The asprepared NC-10-800 catalyst exhibits excellent catalytic performance(sulfur formation rate of 784 g_(sulfur) kg_(cat.)^(-1) h^(-1)),outstanding stability(>100 h),and excellent anti-water vapor,anti-CO_(2) and anti-oxidation properties,suggesting significant potential for practical industrial application.The characterization results and kinetic study demonstrate that the large surface areas and structural defects created by the molten salt at high temperature enhance the exposure of pyridinic N sites and thus accelerate the catalytic activity.Importantly,the water-soluble NaCl template could be easily washed from the carbon nanomaterials,and thus the downstream salt-containing wastewater could be subsequently reused for the dissolution of carbon precursors.This environment-friendly,low-cost,reusable salt-template strategy has significant implications for the development of N-doped carbon catalysts for practical applications.
基金supported by the National Key Research and Development Program of China(No.2018YFA0703700)the National Natural Science Foundation of China(Nos.51991340,51991344,and 51861135201)the Beijing Natural Science Foundation(No.2192021).
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDCs)have emerged as perfect platforms for developing applications in nano-electronics,catalysis,energy storage and environmental-related fields due to their superior properties.However,the low-cost,batch production of high-quality 2D TMDCs remains a huge challenge with the existing synthetic strategies.Herein,we present a scalable chemical vapor deposition(CVD)approach for the batch production of high-quality MoS_(2) nanosheet powders,by using naturally abundant,water-soluble and recyclable NaCl crystal powders as templates.The high-quality MoS_(2) nanosheets powders are achieved by a facile water dissolution-filtration process,by virtue of the excellent dispersibility of the as-grown products in water.The internal mechanism for the scalable synthesis strategy is explored.The applications of the MoS_(2) nanosheets powders are also demonstrated as catalysts or adsorbents in hydrogen evolution reaction(HER)and organic dyes adsorption,respectively.This work should hereby pave ways for the mass production and application of powdery TMDCs in energetic and environmental related fields.
基金supported by the Guangdong Natural Science Funds for Distinguished Young Scholar (2017B030306006)the National Natural Science Foundation of China (Nos. 51772164, U1601206 and U1710256)+2 种基金the National Key Basic Research Program of China (2014CB932400)the Shenzhen Technical Plan Project (Nos. KQJSCX20160226191136, JCYJ20150529164918734 and JCYJ20170412171630020)the Shenzhen Environmental Science and New Energy Technology Engineering Laboratory (No. SDRC [2016]172)
文摘Carbon materials are considered to be one of the most promising anode materials for sodium-ion batteries(SIBs),but the well-ordered graphitic structure limits the intercalation of sodium ions.Besides,the sluggish intercalation kinetics of sodium ions impedes the rate performance.Thus,the precise structure control of carbon materials is important to improve the battery performance.Herein,a 3D porous hard-soft composite carbon(3DHSC)was prepared using the NaCl as the template and phenolic resin and pitch as carbon precursors.The NaCl template restrains the growth of the graphite crystallite during the carbonization process,resulting in small graphitic domains with expanded interlayer spacing which is favorable for the sodium storage.Moreover,the Na Cl templates help to create abundant mesopores and macropores for fast sodium ion diffusion.The porous structure and the graphite crystalline structure can be precisely controlled by simply adjusting the mass ratio of Na Cl,and thus,the suitable structure can be prepared to reach high capacity and rate performance while keeping a relatively high Coulombic efficiency.Typically,a high reversible capacity(215 mA h g^(-1)at 0.05 A g^(-1)),an excellent rate capability(97 mA h g^(-1)at 5 A g^(-1)),and a high initial Coulombic efficiency(60%)are achieved.