期刊文献+
共找到920篇文章
< 1 2 46 >
每页显示 20 50 100
Fault Current Identification of DC Traction Feeder Based on Optimized VMD and Sample Entropy
1
作者 Zhixian Qi Shuohe Wang +2 位作者 Qiang Xue Haiting Mi Jian Wang 《Energy Engineering》 EI 2023年第9期2059-2077,共19页
A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder ca... A current identification method based on optimized variational mode decomposition(VMD)and sample entropy(SampEn)is proposed in order to solve the problem that the main protection of the urban rail transit DC feeder cannot distinguish between train charging current and remote short circuit current.This method uses the principle of energy difference to optimize the optimal mode decomposition number k of VMD;the optimal VMD for DC feeder current is decomposed into the intrinsic modal function(IMF)of different frequency bands.The sample entropy algorithm is used to perform feature extraction of each IMF,and then the eigenvalues of the intrinsic modal function of each frequency band of the current signal can be obtained.The recognition feature vector is input into the support vector machine model based on Bayesian hyperparameter optimization for training.After a large number of experimental data are verified,it is found that the optimal VMD_SampEn algorithm to identify the train charging current and remote short circuit current is more accurate than other algorithms.Thus,the algorithm based on optimized VMD_SampEn has certain engineering application value in the fault current identification of the DC traction feeder. 展开更多
关键词 Urban rail transit train charging current remote short circuit current VMD sample entropy current identification
下载PDF
Analytical Fitting Functions of Finite Sample Discrete Entropies of White Gaussian Noise 被引量:5
2
作者 杨正瓴 冯勇 +2 位作者 熊定方 陈曦 张军 《Transactions of Tianjin University》 EI CAS 2015年第4期299-303,共5页
In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite samp... In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite sample discrete entropies are asymptotically close to their theoretical values.The confidence intervals of the sample Brown entropy are narrower than those of the sample discrete entropy calculated from its differential entropy, which is valid only in the case of a small sample size of WGN. The differences between sample Brown entropies and their theoretical values are fitted by two rational functions exactly, and the revised Brown entropies are more efficient. The application to the prediction of wind speed indicates that the variances of resampled time series increase almost exponentially with the increase of resampling period. 展开更多
关键词 entropy NON-STATIONARY time series prediction WHITE GAUSSIAN noise sample size wind speed
下载PDF
A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine 被引量:8
3
作者 Yuedong Song Pietro Liò 《Journal of Biomedical Science and Engineering》 2010年第6期556-567,共12页
The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a ... The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a time-consuming analysis of the complete length of the EEG time series data by a neurology expert. A variety of automatic epilepsy detection systems have been developed during the last ten years. In this paper, we investigate the potential of a recently-proposed statistical measure parameter regarded as Sample Entropy (SampEn), as a method of feature extraction to the task of classifying three different kinds of EEG signals (normal, interictal and ictal) and detecting epileptic seizures. It is known that the value of the SampEn falls suddenly during an epileptic seizure and this fact is utilized in the proposed diagnosis system. Two different kinds of classification models, back-propagation neural network (BPNN) and the recently-developed extreme learning machine (ELM) are tested in this study. Results show that the proposed automatic epilepsy detection system which uses sample entropy (SampEn) as the only input feature, together with extreme learning machine (ELM) classification model, not only achieves high classification accuracy (95.67%) but also very fast speed. 展开更多
关键词 Epileptic seIZURE ELECTROENCEPHALOGRAM (EEG) sample entropy (SampEn) Backpropagation Neural Network (BPNN) EXTREME Learning Machine (ELM) Detection
下载PDF
Research on natural language recognition algorithm based on sample entropy
4
作者 Juan Lai 《International Journal of Technology Management》 2013年第2期47-49,共3页
Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly ... Sample entropy can reflect the change of level of new information in signal sequence as well as the size of the new information. Based on the sample entropy as the features of speech classification, the paper firstly extract the sample entropy of mixed signal, mean and variance to calculate each signal sample entropy, finally uses the K mean clustering to recognize. The simulation results show that: the recognition rate can be increased to 89.2% based on sample entropy. 展开更多
关键词 sample entropy voice activity detection speech processing
下载PDF
基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测 被引量:1
5
作者 杨国华 祁鑫 +4 位作者 贾睿 刘一峰 蒙飞 马鑫 邢潇文 《中国电力》 CSCD 北大核心 2024年第2期55-61,共7页
为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门... 为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(longshorttermmemory-gatedrecurrentunit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。 展开更多
关键词 短期风电功率预测 互补集合经验模态分解 样本熵 长短期记忆网络 门控循环单元
下载PDF
基于VMD-SE的电力负荷分量的多特征短期预测 被引量:1
6
作者 邵必林 纪丹阳 《中国电力》 CSCD 北大核心 2024年第4期162-170,共9页
为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sample entropy,SE)确定;然后对比原始负荷与模态分量的S... 为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sample entropy,SE)确定;然后对比原始负荷与模态分量的SE值,重构为平稳分量和波动分量,来降低运算规模;同时利用皮尔逊相关系数来筛选特征变量,删除特征冗余,建立灰狼算法优化后的支持向量回归模型(GWO-SVR)和长短期记忆神经网络(LSTM)分别对平稳分量和波动分量预测;最后以某地区2018—2020年用电负荷为例进行实验。实验证明:此模型精准度高达94.7%,平均绝对百分误差降低到2.98%,具有更好的精准性和适用性。 展开更多
关键词 短期预测 VMD 样本熵 波动分量 平稳分量 GWO-SVR 长短期记忆神经网络
下载PDF
CEEMDAN-SE-WT降噪方法在航空发动机燃油流量信号中的应用
7
作者 曲春刚 朱胜翔 冯正兴 《科学技术与工程》 北大核心 2024年第15期6525-6533,共9页
燃油流量信号是反映发动机状态和计算飞机排放物排放量的重要信号,但飞机飞行过程中传感器采集信号时不可避免地会受到外界环境以及内部因素干扰。提出一种结合样本熵(sample entropy,SE)的完全自适应噪声集合经验模态分解(complete ens... 燃油流量信号是反映发动机状态和计算飞机排放物排放量的重要信号,但飞机飞行过程中传感器采集信号时不可避免地会受到外界环境以及内部因素干扰。提出一种结合样本熵(sample entropy,SE)的完全自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与小波变换(wavelet transform,WT)的联合降噪方法。首先使用CEEMDAN对燃油流量信号进行分解得到本征模态分量,利用样本熵筛选含噪分量,并用相关系数与方差贡献率进行复核。对于含噪分量使用小波阈值降噪进行处理。最后将未处理的模态分量和完成降噪的模态分量重构得到最终燃油流量信号。通过与其他方法比较,CEEMDAN-SE-WT方法拥有最高信噪比为85.287,降噪后燃油消耗总量与飞机总重变化最为接近,可以认为该方法较大程度保留了燃油流量信号中的有效特征,为后续计算民机排放物排放总量提供了良好的数据支持。 展开更多
关键词 降噪 燃油流量信号 完全自适应噪声集合经验模态分解 小波阈值降噪 样本熵
下载PDF
High impedance fault detection in distribution network based on S-transform and average singular entropy 被引量:2
8
作者 Xiaofeng Zeng Wei Gao Gengjie Yang 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期64-80,共17页
When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform... When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions. 展开更多
关键词 High impedance fault(HIF) Wavelet packet transform(WPT) S-transform(ST) Singular entropy(se)
下载PDF
Tool State Detection by Harmonic Wavelet and Sample Entropy 被引量:3
9
作者 SONG Wanqing ZHANG Jing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1068-1073,共6页
It is a fact that acoustic emission(AE) signals contain potentially valuable information for tool wear and breakage monitoring and detection.However,AE stress waves produced in the cutting zone are distorted by the tr... It is a fact that acoustic emission(AE) signals contain potentially valuable information for tool wear and breakage monitoring and detection.However,AE stress waves produced in the cutting zone are distorted by the transmission path and the measurement systems,it is difficult to obtain a reliable result by these raw AE data.It is generally known that the process of tool wear belongs to detect weak singularity signals in strong noise.The objective of this paper is to combine Newland Harmonic wavelet and Richman-Moorman(2000) sample entropy for detecting weak singularity signals embedded in strong signals.First,the raw AE signal is decomposed by harmonic wavelet and transformed into the three-dimensional time-frequency mesh map of the harmonic wavelet,at the same time,the contours of the mesh map with log space is induced.Second,the profile map of the three-dimensional time-frequency mesh map is offered,which corresponds to decomposed level on harmonic wavelets.Final,by computing sample entropy in each level,the weak singularity signal can be easily extracted from strong noise.Machining test was carried out on HL-32 NC turning center.This lathe does not have a tailstock.Tungsten carbide finishing tool was used to turn free machining mild steel.The work material was chosen for ease of machining,allowing for generation of surfaces of varying quality without the use of cutting fluids.In turning experiments,the feasibility for tool condition monitoring is demonstrated by 27 kinds of cutting conditions with the sharp tool and the worn tool,54 group data are sampled by AE.The sample entropy of each level of wavelet decomposed for each one of 54 AE datum is computed,wear tool and shaper tool can be distinguished obviously by the sample entropy value at the 12th level,this is a criterion.The proposed research provides a new theoretical basis and a new engineering application on the tool condition monitoring. 展开更多
关键词 tool wear harmonic wavelet sample entropy
下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:1
10
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
下载PDF
Attention Drawing of Movie Trailers Revealed by Electroencephography Using Sample Entropy 被引量:1
11
作者 Po-Shan Wang Shang-Ran Huang +4 位作者 Chao-Wen Tsai Chia-Feng Lu Shin Teng C.-I. Hung Yu-Te Wu 《Journal of Biosciences and Medicines》 2014年第4期6-11,共6页
A movie trailer is a common advertising tool in the entertainment industry. Detection of a viewer’s brain responses to a movie trailer can help film producers to tailor a more appealing trailer of a movie. In this st... A movie trailer is a common advertising tool in the entertainment industry. Detection of a viewer’s brain responses to a movie trailer can help film producers to tailor a more appealing trailer of a movie. In this study, we acquired electroencephalographic (EEG) signals from subjects when they watched movie trailers (labeled as Movie session), and compared with their resting state session (labeled as Resting session) or when they watch nature scenes (labeled as Nature session). We used Sample Entropy (SampEn) to analyze the EEG signals between different sessions. Results showed that the complexity ratios at Fp1, Fp2 and Fz channels derived from Movie session were significantly lower than that in Resting state or when subjects watched Nature session (p < 0.001). Our results suggest that the brain status can affect the complexity of their EEG. Further, the attraction of attention of a movie trailer can be observed from the change of EEG. 展开更多
关键词 NEUROMARKETING ELECTROENCEPHALOGRAPHY sample entropy MOVIE TRAILER
下载PDF
A Novel Sample Introduction Technique for the Simultaneous Determination of As,Se,Ge and Hg in Chinese Medicinal Material 被引量:1
12
《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2001年第4期400-406,共7页
A novel technique of Moveable Reduction Bed Hydride Generator(MRBHG)was applied tohe hydride generation or cold vapor generation of As,Se,Ge,and Hg existing In TraditionalChinese Medicinal Material(TCM).The si... A novel technique of Moveable Reduction Bed Hydride Generator(MRBHG)was applied tohe hydride generation or cold vapor generation of As,Se,Ge,and Hg existing In TraditionalChinese Medicinal Material(TCM).The simultaneous determination of the multi-elements wasperformed with ICP-MS.A solid reduction system involving the use of potassiumtetraborohydride and tartaric acid was applied to generating metal hydride or cold vaporefficiently.The factors affecting the metal cold vapor generation were studied.The mainadvantage of the technique is that only a 4μL volume of sample was required for the cold vapor 展开更多
关键词 for the Simultaneous Determination of As se Ge A Novel sample Introduction Technique CHINEse MATERIAL MEDICINAL and HG Ge
下载PDF
二级减速器故障系统建模及SVD-MMSE劣化评估
13
作者 解开泰 章翔峰 +4 位作者 周建星 余满华 王胜男 姚俊 张旭龙 《振动.测试与诊断》 EI CSCD 北大核心 2024年第3期580-588,624,共10页
为检测故障齿轮劣化程度并进行有效的程度评估,通过有限元法建立含有正常、裂纹和断齿等3种齿轮状态的二级直齿轮减速器系统模型。首先,分别计算3种状态的齿轮时变啮合刚度,并综合考虑轴承支撑刚度,得到了3种不同状态下的轴承振动响应;... 为检测故障齿轮劣化程度并进行有效的程度评估,通过有限元法建立含有正常、裂纹和断齿等3种齿轮状态的二级直齿轮减速器系统模型。首先,分别计算3种状态的齿轮时变啮合刚度,并综合考虑轴承支撑刚度,得到了3种不同状态下的轴承振动响应;其次,引入多元多尺度样本熵(multivariate multiscale sample entropy,简称MMSE)对故障齿轮的劣化程度进行分析;最后,引进奇异值分解(singular value decomposition,简称SVD)算法进行预处理,以达到更好的诊断效果来综合评定故障齿轮生命周期的劣化程度。结果表明:齿轮发生故障时,主要导致时频域信号发生转频调制,时域存在有规律的冲击,频域出现边频带,且分布在输入轴的转频及其倍频和啮频及其倍频处;随着故障程度的增加,劣化越发明显,频率成分也发生改变,致使MMSE值也随之变化,且整体呈单调递减趋势;SVD-MMSE算法能有效地对齿轮故障程度进行判别,降低了噪声对于劣化程度检测准确性的影响。 展开更多
关键词 性能劣化 有限元分析 时变啮合刚度 奇异值分解 多元多尺度样本熵
下载PDF
基于混合采样和SE_ResNet_SVM的不平衡多分类研究
14
作者 矫桂娥 翁铜铜 张文俊 《应用科学学报》 CAS CSCD 北大核心 2024年第6期1000-1015,共16页
针对结构化多分类算法中不平衡数据集类别分布不均导致分类难度增加的问题,本文提出了一种基于混合采样、压缩与激励(squeeze and excitation, SE)模块、改进深度残差网络和支持向量机(support vector machines, SVM)的网络模型SNSMRS (... 针对结构化多分类算法中不平衡数据集类别分布不均导致分类难度增加的问题,本文提出了一种基于混合采样、压缩与激励(squeeze and excitation, SE)模块、改进深度残差网络和支持向量机(support vector machines, SVM)的网络模型SNSMRS (SMOTEENNmixed residual networks-SVM network)。首先,通过合成少数过采样和编辑最近邻技术来改善数据分布;然后,构建融合SE模块与通过融合批次归一化和群组归一化的深度残差网络来提取特征;最后,通过SVM进行输出网络模型。其中,SE模块增强了模型对特征的区分能力,提升了模型的鲁棒性;基于融合归一化的残差网络受批次大小的影响较小,并且避免了传统神经网络梯度消失和精度退化等问题,增强了网络的稳定性与准确度;SVM可以根据特征向量在空间上的分布进行全部特征的分割,特征利用率高,提高了模型的分类精度。在7个不同规模和领域的非平衡公开数据集上进行了对比和消融实验,结果表明,本文所提的网络模型SNSMRS不仅优于其他深度学习模型,而且相对于未改良的ResNet,Macro-F1和G-mean值分别提升了约3%和4%,同时在4个数据集上的Macro-F1和G-mean值均超过了95%。 展开更多
关键词 不平衡多分类 混合采样 压缩与激励模块 群组归一化 ResNet 支持向量机
下载PDF
Efficient slope reliability analysis under soil spatial variability using maximum entropy distribution with fractional moments
15
作者 Chengxin Feng Marcos A.Valdebenito +3 位作者 Marcin Chwała Kang Liao Matteo Broggi Michael Beer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1140-1152,共13页
Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty ... Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical engineering.The latter is particularly true for slope stability assessment,where the effects of uncertainty are synthesized in the so-called probability of failure.This probability quantifies the reliability of a slope and its numerical calculation is usually quite involved from a numerical viewpoint.In view of this issue,this paper proposes an approach for failure probability assessment based on Latinized partially stratified sampling and maximum entropy distribution with fractional moments.The spatial variability of geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.Then,failure probabilities are estimated employing maximum entropy distribution with fractional moments.The application of the proposed approach is examined with two examples:a case study of an undrained slope and a case study of a slope with cross-correlated random fields of strength parameters under a drained slope.The results show that the proposed approach has excellent accuracy and high efficiency,and it can be applied straightforwardly to similar geotechnical engineering problems. 展开更多
关键词 SLOPE Random field Reliability analysis Maximum entropy distribution Latinized partial stratified sampling
下载PDF
基于EEMD-SE-LSTM 组合模型的开都河日径流模拟研究
16
作者 丁占涛 安杰 +3 位作者 吴国洋 宋昱锋 罗鑫 黄森 《石河子大学学报(自然科学版)》 CAS 北大核心 2024年第3期335-341,共7页
为提高开都河日径流模拟的精度和更科学地进行开都河水资源的管理与规划,在集成经验模态分解(EEMD)的基础上进行样本熵(SE)重构来完成长短期记忆网络(LSTM)组合模型的构建。采用集成经验模态分解提取开都河日径流序列中具有物理含义的信... 为提高开都河日径流模拟的精度和更科学地进行开都河水资源的管理与规划,在集成经验模态分解(EEMD)的基础上进行样本熵(SE)重构来完成长短期记忆网络(LSTM)组合模型的构建。采用集成经验模态分解提取开都河日径流序列中具有物理含义的信息,得到一系列本征模态分量(IMF)及一个趋势项(Res),计算每个分量的样本熵,复杂程度接近的子序列叠加为新序列,建立长短期记忆神经网络模型进行预测,叠加得到最终模拟值。结果表明:EEMD-SE-LSTM组合模型日径流模拟的精度得到提高,其确定系数R2=0.81、纳什效率系数NSE=0.73,均高于LSTM模型的R2=0.73、NSE=0.52和EEMD-LSTM模型的R2=0.64、NSE=0.63;EEMD-SE-LSTM组合模型的日径流模拟准确性更高,其评价指标(R2=0.81、NSE=0.73)高于其他单一模型SVM(R2=0.70、NSE=0.58)。EEMD-SE-LSTM组合模型提高了日径流模拟精度,可以更好地为开都河水资源管理与规划提供科学依据。 展开更多
关键词 集成经验模态分解 样本熵 长短期记忆网络 组合模型 日径流模拟
下载PDF
基于WTMSE-AMCNN_1D的协作机器人故障诊断
17
作者 戴天赐 王华 +2 位作者 汪健 董凌浩 李帅康 《组合机床与自动化加工技术》 北大核心 2024年第1期118-122,共5页
六轴协作机器人在实际工作中难以采集到振动数据,且其故障诊断精度低,针对这一问题,提出一种基于多尺度小波分解、样本熵与一维注意力卷积神经网络(WTMSE-AMCNN_1D)的六轴协作机器人电流信号故障诊断方法。首先,对采集的原始故障数据进... 六轴协作机器人在实际工作中难以采集到振动数据,且其故障诊断精度低,针对这一问题,提出一种基于多尺度小波分解、样本熵与一维注意力卷积神经网络(WTMSE-AMCNN_1D)的六轴协作机器人电流信号故障诊断方法。首先,对采集的原始故障数据进行随机采样;其次,采用多尺度小波分解后计算样本熵的方法来提取原始信号特征,将其作为引入注意力机制(AM)的一维卷积神经网络的输入并进行训练;最后,利用端到端训练后的模型实现故障诊断。通过实验采集某六轴协作机器人的电流数据进行诊断测试,并与其它模型对比,结果表明WTMSE-AMCNN_1D模型诊断精度达到99.21%,可以有效诊断协作机器人的故障。 展开更多
关键词 协作机器人 故障诊断 小波分解 多尺度样本熵 注意力机制 一维卷积神经网络
下载PDF
Anomaly-Resistant Decentralized State Estimation Under Minimum Error Entropy With Fiducial Points for Wide-Area Power Systems
18
作者 Bogang Qu Zidong Wang +2 位作者 Bo Shen Hongli Dong Hongjian Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期74-87,共14页
This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines... This paper investigates the anomaly-resistant decentralized state estimation(SE) problem for a class of wide-area power systems which are divided into several non-overlapping areas connected through transmission lines. Two classes of measurements(i.e., local measurements and edge measurements) are obtained, respectively, from the individual area and the transmission lines. A decentralized state estimator, whose performance is resistant against measurement with anomalies, is designed based on the minimum error entropy with fiducial points(MEEF) criterion. Specifically, 1) An augmented model, which incorporates the local prediction and local measurement, is developed by resorting to the unscented transformation approach and the statistical linearization approach;2) Using the augmented model, an MEEF-based cost function is designed that reflects the local prediction errors of the state and the measurement;and 3) The local estimate is first obtained by minimizing the MEEF-based cost function through a fixed-point iteration and then updated by using the edge measuring information. Finally, simulation experiments with three scenarios are carried out on the IEEE 14-bus system to illustrate the validity of the proposed anomaly-resistant decentralized SE scheme. 展开更多
关键词 Decentralized state estimation(se) measurements with anomalies minimum error entropy unscented Kalman filter wide-area power systems
下载PDF
基于CEEMDAN-SE-CNN-BiLSTM模型的大豆期货价格预测
19
作者 周雅丽 谭莹莹 赵玉华 《宁波工程学院学报》 2024年第2期14-20,共7页
为了提高大豆期货价格预测的精确度,综合利用大豆期货市场内外部信息,基于一种“分解—重组—预测—集成”多步期货价格预测模型进行改进。对大豆价格序列进行自适应噪声完备集合经验模态分解(CEEMDAN),得到IMF分量及误差项。筛选后剔... 为了提高大豆期货价格预测的精确度,综合利用大豆期货市场内外部信息,基于一种“分解—重组—预测—集成”多步期货价格预测模型进行改进。对大豆价格序列进行自适应噪声完备集合经验模态分解(CEEMDAN),得到IMF分量及误差项。筛选后剔除与原序列相关系数小的IMF分量,再用样本熵算法(SE)对分解序列进行重组。用优化的CNN-BiLSTM预测模型对重组序列进行预测,集成后得到最终预测值。实证结果表明:在预测大豆期货价格时,改进后的CEEMDAN-SE-CNN-BiLSTM模型普遍优于LSTM、CNN-LSTM等基准农产品期货预测模型。 展开更多
关键词 大豆期货价格预测 自适应噪声完备集合经验模态分解 样本熵 卷积神经网络 双向长短期神经网络
下载PDF
基于IMSE和参数优化VMD的滚动轴承故障诊断方法
20
作者 王敏娟 贾茜 +1 位作者 汪友明 丁文柯 《西安邮电大学学报》 2024年第4期111-118,共8页
针对滚动轴承振动信号特征提取难和故障诊断精度低的问题,提出一种基于改进的多尺度样本熵(Improved Multiscale Sample Entropy,IMSE)和参数优化变分模态分解(Variational Mode Decomposition,VMD)的滚动轴承故障诊断方法。该方法先利... 针对滚动轴承振动信号特征提取难和故障诊断精度低的问题,提出一种基于改进的多尺度样本熵(Improved Multiscale Sample Entropy,IMSE)和参数优化变分模态分解(Variational Mode Decomposition,VMD)的滚动轴承故障诊断方法。该方法先利用IMSE对原始时间序列进行平滑粗粒化,并用每个序列的最大值代替平均值表示粗粒化序列的信息,避免多尺度样本熵(Multiscale Sample Entropy,MSE)中存在的数据丢失问题。结合尺度谱与求和模糊熵优化VMD参数,得到最优模态分量并筛选重构信号,将重构信号的IMSE值作为特征向量输入支持向量机进行故障诊断。实验结果表明,所提方法获得了更精确的故障信号特征且提高了故障诊断精度。 展开更多
关键词 滚动轴承故障诊断 变分模态分解 尺度谱 求和模糊熵 多尺度样本熵
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部