An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicat...An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.展开更多
A novel method for fast determination of ethylendiamine (EDA) in Aminophylline Tablets has been developed by small-sized capillary electrophoresis with amperometric detection (small-CE-AD) coupled with field-ampli...A novel method for fast determination of ethylendiamine (EDA) in Aminophylline Tablets has been developed by small-sized capillary electrophoresis with amperometric detection (small-CE-AD) coupled with field-amplified sample injection (FASI). Under the optimum conditions, EDA and four aliphatic diamine homologs (1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane and 1,6-diaminohexane) could be well separated within 6 min at a separation voltage of 2.0 kV in an acetate buffer solution of pH 3.8 with low limit of detection (LOD) of 1.3 × 10^-11 g/mL for EDA (S/N=3). The proposed method has been successfully applied to direct deter- mination of EDA content in different batches of Aminophylline Tablets. The method does not require off-line preconcentration and derivatization steps, which should find wide application fields including pharmaceuticals as an alternative to conventional and microchip CE approaches.展开更多
文摘An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.
基金This work was financially supported by the National Natural Science Foundation of China (No. 21205042), the Special Funds for the Development of Major Scien- tific Instruments and Equipment (No. 2011YQ15007205), and the Fundamental Research Funds for the Central Universities.
文摘A novel method for fast determination of ethylendiamine (EDA) in Aminophylline Tablets has been developed by small-sized capillary electrophoresis with amperometric detection (small-CE-AD) coupled with field-amplified sample injection (FASI). Under the optimum conditions, EDA and four aliphatic diamine homologs (1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane and 1,6-diaminohexane) could be well separated within 6 min at a separation voltage of 2.0 kV in an acetate buffer solution of pH 3.8 with low limit of detection (LOD) of 1.3 × 10^-11 g/mL for EDA (S/N=3). The proposed method has been successfully applied to direct deter- mination of EDA content in different batches of Aminophylline Tablets. The method does not require off-line preconcentration and derivatization steps, which should find wide application fields including pharmaceuticals as an alternative to conventional and microchip CE approaches.